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INTRODUCTION

Cancer is one of the leading causes of death worldwide and 
is characterized by the uncontrolled growth and spread of 
abnormal cells in the body. These cells can invade surrounding 
tissues and metastasize to distant organs, making the 
disease highly complex and difficult to treat in its advanced 
stages. Cancer originates from genetic mutations, which are 
often triggered by environmental factors, lifestyle choices, 
hereditary predispositions, or a combination of these.1,2 As 
the disease progresses, it disrupts the normal functioning of 
vital organs and systems, ultimately resulting in significant 
morbidity and mortality. There are many different types 
of cancer, each named after the organ or tissue where it 
originates. The most common types include lung cancer, 
prostate cancer, breast cancer, colorectal cancer, and liver 
cancer. Others, such as pancreatic, ovarian, and brain cancers, 
are less common but often more aggressive. Each type of 

cancer has unique characteristics, progression patterns, and 
treatment protocols. Among these, breast cancer is the most 
commonly diagnosed cancer in women globally and is also a 
leading cause of cancer-related mortality in women.3,4

Breast cancer originates in the breast tissue, typically in the 
ducts or lobules. The disease begins when cells in the breast 
mutate and grow uncontrollably, forming a tumor. In many 
cases, these tumors can become malignant, meaning they 
have the potential to spread to other parts of the body. Factors 
contributing to the occurrence of breast cancer include age, 
genetic mutations (such as BRCA1 and BRCA2), hormonal 
imbalances, lifestyle factors (e.g., alcohol consumption, 
obesity), and family history.5 According to the World Health 
Organization (WHO), breast cancer has surpassed lung cancer 
as the most diagnosed cancer globally. In its 2021 report, 
WHO estimated that in 2020, 2.3 million women worldwide 
were diagnosed with breast cancer and 685,000 died from 
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it.6 These alarming statistics highlight the pressing need for 
improved diagnostic and prognostic tools for early detection 
and effective treatment planning. Moreover, breast cancer 
can be identified using various forms of data. Imaging 
techniques such as mammography, ultrasound, and magnetic 
resonance imaging are widely used in clinical settings for 
tumor detection and localization.7 Recently, gene expression 
data have emerged as a powerful source for understanding 
the molecular mechanisms underlying breast cancer.8 Gene 
expression profiling (GEP) offers a more granular view by 
identifying genes that are overexpressed or underexpressed, 
aiding early diagnosis, subtype classification, and survival 
prediction.

However, most current research is primarily focused on 
imaging-based analysis using machine learning (ML) and deep 
learning (DL).8-10 In contrast, comparatively little attention has 
been given to gene expression data, despite its rich potential 
for molecular-level insights. Among the existing studies that 
utilize gene expression data, a significant proportion rely 
on traditional ML models such as support vector machines 
(SVM), random forests (RF), and Naïve Bayes (NB), with limited 
exploration of novel or hybrid approaches. Moreover, only 
a few studies have employed DL for gene expression-based 
breast cancer prediction or survival analysis, and those that 
have done so have not demonstrated consistently high 
performance or robustness. This gap indicates the need for a 
focused review and analysis of existing methods in this area. 
To address this, the present study conducts a comprehensive 
review of recent works published between 2024 and 2025, 
selected from a pool of 150 papers retrieved from IEEE, Google 
Scholar, Web of Science, and Scopus. After outdated and less 
relevant papers were discarded, 25 papers were chosen for 
in-depth analysis. The main goal of this work was to explore 
and evaluate current methodologies, datasets, performance 
metrics, and predictive accuracies in breast cancer detection 
and gene expression analysis. The contributions of this work 
are as follows:

•	  Conducts a comprehensive review of recent (2024-2025) 
literature focused on breast cancer detection using gene 
expression data.

• 	 Twenty-five carefully selected papers were analyzed from 
an initial pool of 150 retrieved from reputable sources such 
as IEEE, Web of Science, Scopus, and Google Scholar.

• 	 Highlights the research gap where most studies are 
focused on imaging data, while gene expression data 
remains underexplored.

•	 Demonstrates that existing gene expression studies largely 
use basic ML models with limited application of novel or 
advanced techniques.

• 	 Shows that DL methods applied to gene expression have 
not achieved high predictive accuracy (ACC) or model 
robustness.

• 	 Categorizes existing approaches based on datasets, 
performance metrics, and models used, offering clear 
insight into current research trends.

• 	 Provides a foundation for future work, encouraging 
the development of novel DL architectures specifically 
designed for gene expression-based breast cancer 
prediction and survival analysis.

This manuscript is structured to provide a comprehensive 
analysis of ML and DL approaches in breast cancer prediction. 
Section II presents the literature review, covering existing 
methodologies and related work. Section III discusses 
the findings from the reviewed studies, divided into four 
subsections: 3.1 Literature Survey Findings, 3.2 Datasets 
Used, 3.3 Performance Metrics Used, and 3.4 ML and DL 
Models with Feature Extraction and Selection Approaches. 
Section IV highlights the issues and challenges identified in 
current research. Finally, section V concludes the study with a 
summary of insights.

Literature Survey

The literature survey explores recent advancements in 
breast cancer prediction, classification, and survival analysis 
using ML and DL approaches. Various studies utilized multi-
omic datasets, such as the Molecular Taxonomy of Breast 
Cancer International Consortium (METABRIC) and The Cancer 
Genome Atlas-Breast Invasive Carcinoma (TCGA-BRCA), 
integrating clinical, genomic, and imaging data to enhance 
predictive ACC and personalize treatment. Various strategies 
were applied to feature selection, classification, and survival 
prediction. For instance, Mahmoud et al.11 to develop an 
advanced genomics-based architecture for predicting breast 
cancer survival in order to address disease variability and 
complexity. In this study, the multi-omic METABRIC dataset,12 
which includes clinical data, somatic mutations, and gene 
expression from a large patient cohort, was integrated and 
pre-processed. This work employed DL approaches, including 
Graph-Convolutional Networks (GCN), Long Short-Term 
Memory (LSTM), and Variational Autoencoders (VAE), which 
were trained using a stochastic gradient descent optimization 
approach with an 80:20 train-test split. Evaluations were 
conducted using specificity, sensitivity/recall (REC), and ACC. 
The findings showed that among VAE, GCN, and LSTM, LSTM 
achieved 98.7% ACC. The findings show that integration of 
multi-omic data within an optimized DL approach improves 
the ACC of survival prediction and enables more effective, 
personalized treatment strategies.
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Bharanidharan et al.13, aimed at designing computational 
accurate/efficient system for cancer detection across five 
regions, i.e., renal (kidney), prostate, lung, liver and breast. For 
this study, the microarray dataset from 1027 patients, sourced 
from CuMiD,a14 was considered. This work utilized Sparse Auto-
Encoder, Independent Component Analysis and Principal 
Component Analysis (PCA) for dimensionality reduction of 
the dataset, and employed Remora-Optimization, guided by 
a local entropy-based fitness function, to enhance feature 
transformation and classification ACC. For classification, SVM, 
NB, decision tree (DT), and RF were utilized. For the evaluation 
of this study, six performance metrics, i.e., REC, balanced 
ACC score (BAC), F-score (FS), precision (PRE), Cohen’s kappa 
coefficient (KAP), and Matthews correlation coefficient 
(MCC), were utilized. Results show that dimensionality was 
reduced from 36,805 to 80 features, with average balanced 
ACC improving to 93.4%, compared with 82.7% without the 
proposed approach. Kishore Khan et al.15 aimed to develop 
an effective breast cancer classification approach using the 
METABRIC dataset.12 This work included data preprocessing, 
dimensionality reduction using PCA, and MCC-based feature 
selection. Further, a deep neural network (DNN) was used; it 
was enhanced with dropout layers, and early stopping was 
applied during training on selected features using MCC. The 
performance was evaluated using ACC, PRE, REC, and FS, 
alongside gene expression visualization. Results show that 
dimensionality reduction provided a boost in classification 
performance, resulting in higher ACC. 

Das et al.16 focused on enhancing breast cancer staging and 
classification by integrating ML with bioinformatics analyses 
using gene expression data from TCGA-BRCA dataset.17 The 
methodology of this work involved the identification of 
differentially expressed genes and their analysis using protein-
protein interaction, regulatory-network, and signaling-
pathway approaches to uncover potential therapeutic targets. 
The ML models used included RF, SVM, DT, Gaussian NB (GNB), 
K-Nearest Neighbors (KNN), and eXtreme Gradient Boosting 
(XGB) for classification of cancer stage and cancer subtype. For 
evaluation, ACC, PRE, REC, FS, and specificity were considered. 
Evaluations showed that RF and XGB achieved better results, 
reaching 97.19% and 95.23%, respectively. Findings show 
that key proteins and micro ribonucleic acids (miRNAs) are 
potential biomarkers, demonstrating the method’s potential 
to advance personalized treatment approaches. Hu et al.18, 
aimed at enhancing identification of cancer-driver genes 
by addressing limitation in existing approaches related to 
feature relationships and noise in protein-protein interaction 
(PPI) data. This work utilized a dynamic-incentive-model 
(DIM) to construct a hypergraph to minimize false positives 
in PPI networks. Gene importance within hyperedges was 

assessed using Network Functional score (NFS), and DIM 
integrates NFS with miRNA and messenger RNA (mRNA) 
differential expression scores. The DIM was evaluated on 
pan-cancer, prostate cancer, lung cancer, and breast cancer 
datasets. The evaluation was performed using the area under 
the receiver operating characteristic curve (AUC-ROC), with 
DIM outperforming existing approaches and demonstrating 
strong cross-cancer generalization, thereby improving 
targeted gene discovery.

Kurniadi and Saputri19 aimed to investigate breast-cancer 
survivability using multi-modal data from the METABRIC 
dataset.12 Because the dataset is high-dimensional, this work 
used XGB to select top-k features. This work further utilized 
ML classifiers (XGB, RF, SVM, and KNN) using selected features. 
The evaluation metrics used for the study included ACC, PRE, 
REC, and FS. Findings show that XGB and RF achieved the 
highest ACC (72.7%). Findings show that feature optimization 
is important for achieving good performance in survival 
prediction. Brahmatej Rupavath et al.20 aimed to improve 
metastasis prediction in breast cancer by using a recursive 
neural network (RecNN) and the METABRIC dataset12, which 
provides comprehensive genomic information. The approach 
included data preprocessing using named-entity recognition 
for structured classification and feature selection using Least 
Absolute Shrinkage and Selection Operator (LASSO). In this 
work, the RecNN was applied to predict metastasis on the 
basis of selected features. For evaluation, ACC, PRE, REC, 
and FS were considered; the RecNN achieved 98.69% ACC, 
outperforming approaches such as CNN.

Puttegowda et al.21, aimed at improving breast-cancer and 
personalized treatment by predicting key-clinical attributes, 
i.e., cancer subtype, tumor stage and progesterone-receptor 
status utilizing ML. For this study, the METABRIC dataset 
was utilized, which provides extensive clinical and genomic 
information. In this study, classification was performed using 
logistic-regression (LR), SVM, RF, and an ensemble of these 
approaches. Evaluations were conducted with respect to 
ACC, with SVM-radial basis function achieving 99.79% ACC, 
SVM achieving 97.93% ACC, RF achieving 97.59% ACC, and 
LR achieving 89.45% ACC. Findings show the effectiveness 
of non-linear models in capturing complex patterns, 
achieving prognostic ACC, and supporting personalized 
cancer treatment planning. Ghosh et al.22 focused on the 
identification of subtype-specific gene biomarkers for breast 
cancer, utilizing gene expression data to support precise 
treatment and classification. For this study, the TCGA-BRCA 
dataset17 was utilized. The methodology involved feature 
selection using LASSO, which was combined with four ML 
approaches (i.e., NB, KNN, SVM, and RF) to determine the 
best approach, with SVM achieving the best performance. 
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Furthermore, a modified Compact Genetic Approach (mCGA) 
was employed to refine biomarker selection for subtypes 
[basal-like, human epidermal growth factor receptor 2 (HER2)-
enriched, Luminal B, and Luminal A]. Evaluations showed 
AUC-ROC values of 100% for HER2 and Basal, 97.31%, and 
98.78% for Luminal A. The pathway and enrichment analyses 
demonstrated biological relevance.

Turova et al.23, aimed at improving breast-cancer subtyping 
by introducing breast-cancer classifier (BCC), a ML-based 
approach which utilizes RNA-sequence data for addressing 
limitation in current approaches like Immunohisto-Chemistry 
and PAM50, which are particularly focused in identifying 
HER2-low sub-type. In their study, data from TCGA-BRCA,17 
SCAN-B cohorts,24 and METABRIC12 were considered, from 
which the BCC was developed. The approach involved 
training BCC to classify breast-cancer subtypes, with a 
focus on distinguishing HER2-low as a unique group and 
reclassifying PAM50’s normal subtype. Statistical analysis 
showed that BCC had high ACC. Findings show prognostic 
similarities between HER2-low and basal subtypes. Findings 
show that BCC’s approach has potential to enhance treatment 
stratification and to deepen molecular understanding of 
breast cancer. Asfaw and Tegaw25 aimed to compare survival 
outcomes of breast cancer patients undergoing mastectomy 
versus breast-conserving surgery (BCS) using ML approaches. 
This study utilized the METABRIC dataset,12 which was first 
preprocessed using an imputation approach, then subjected 
to a Synthetic Minority Oversampling Technique (SMOTE)-
based class-balancing approach, and finally underwent 
feature selection. For classification, DT, XGB, LR, GNB, RF, 
KNN, SVM, AdaBoost, and Gradient-Boosting (GB) were 
used; GB achieved 95.4% training and 86.4% testing ACC for 
mastectomy class. For the BCS class, GB achieved training and 
testing ACCs of 94.6% and 82.8%, respectively. The important 
features included age, the Nottingham Prognostic Index, and 
relapse-free status. Findings showed that younger patients 
derived greater benefit from BCS, supporting personalized 
treatment approaches. 

Yaqoob and Verma26 aimed to enhance breast cancer 
classification using gene-expression data by introducing 
a hybrid feature-selection approach that combined the 
Kashmiri-Apple Optimization Approach (KAO) and Armadillo-
Optimization Approach (AOA), followed by an SVM classifier. 
The KAO was employed for global exploration of informative 
genes, while AOA performed local refinement to reduce 
redundancy and prevent premature convergence. The KAO-
AOA-SVM was applied to breast cancer datasets, achieving 
98.97% ACC using only 15 genes. The approach demonstrated 
consistent performance across gene subsets, indicating 
robustness and potential for clinical and cross-cancer 

applications. Kallah-Dagadu et al.27, aimed at enhancing 
breast-cancer prediction by identification of key-genes using 
ML and explainable AI (XA) approaches. This study used the 
TCGA-BRCA17 dataset, which contained 1,208 samples and 
3,602 gene features. In this work, KNN, SVM, and RF were 
applied with feature selection. The XAI approaches included 
accumulated local effects, partial dependence plots, and 
SHapley Additive exPlanations (SHAP) values, which were 
used to interpret model outputs and assess gene importance. 
The leaving-one-covariate-in approach was used to identify 
the top ten predictive genes, with SVM and RF rankings closely 
aligned. The Findings showed the value of explainability in 
ML-driven cancer diagnosis for improving clinical decision-
making. 

Aliouane et al.28 aimed to improve breast cancer classification 
by integrating a DL approach with SHAP to interpret gene 
expression data. The approach involved training a DL 
model and evaluating it using 5-fold cross-validation and 
ensemble learning on the ArrayExpress (E-MTAB-3732) 
dataset,29 achieving a mean ACC of 99.64%. To assess 
generalizability, the CuMiDa dataset14 was utilized; it 
comprises only three databases (GSE42568, GSE7904, and 
GSE45827), which achieved ACCs of 99.14%, 100%, and 
98.67%, respectively. SHAP analysis identified key genes, 
including KRT5, ESR1, KRT19, and DSCAM-AS1. Further 
validation using the MalaCards30 database demonstrated 
the relevance of genes, providing evidence of the method’s 
effectiveness for biomarker interpretability and discovery. 
Li et al.31 aimed to develop a stable and accurate approach 
for breast cancer prognosis that addressed data distribution 
shifts across diverse datasets; they presented a model called 
Deep-Global Balancing-Cox Regression (DGBCox), which 
integrated causal inference with DP. The gene-expression 
data were first transformed into latent representations using 
a deep autoencoder, and the resulting representations were 
then balanced using a causality-based approach. Causal 
features were selected using balanced representations for 
survival prediction. The DGBCox was evaluated on twelve 
breast cancer datasets, on which it outperformed existing 
benchmark approaches in both stability and predictive ACC, 
demonstrating effectiveness in heterogeneous data scenarios 
and improving prognostic reliability.

Rabah et al.32 aimed to enhance noninvasive breast cancer 
subtype classification by developing a multi-modal DL 
approach that combined mammography images with 
clinical metadata. Utilizing the Chinese Mammography 
Database33, which contains 4,056 mammography images 
from 1,775 patients, the approach classifies breast lesions 
into five classes: triple-negative, HER2-enriched, Luminal 
B, Luminal A, and benign. The approach integrated image 
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and clinical data, and its performance was evaluated using 
AUC, achieving 88.78% ACC. Sridharan and Ghosh34 aimed 
to enhance breast cancer survival prediction by integrating 
GEP data with agent-based modelling (ABM). The approach 
first identified key genes involved in cancer progression using 
GEP, and then constructed a model representing how genes 
influence cellular behavior. These insights were incorporated 
into ABM to simulate tumor growth and treatment response 
under various conditions. The predictive performance of 
the GEP-ABM was validated using actual patient data and 
benchmarked against existing approaches using ACC-based 
metrics. Findings suggest that GEP-ABM integration improves 
survival predictions and supports more personalized, data-
driven breast cancer treatment strategies.

Kunta and Lepakshi35 aimed at developing ascalable, non-
invasive solution for breast cancer detection using mRNA gene 
expression data. The approach involved transforming one-
dimensional mRNA sequences into two-dimensional images 
to capture spatial information. After standard preprocessing 
and applying SMOTE for class balancing, features were 
extracted using AlexNet and ResNet101 to mitigate issues 
such as local feature dependence and vanishing gradients. 
These features were further combined and used to train an 
Ensemble-of-Ensemble classifier, which incorporated XGB, RF, 
AB, bagging, and extra-trees for consensus-based prediction. 
When evaluated on gene expression data, the model achieved 
99.91% ACC, confirming its robustness and applicability. Li et 
al.36 presented a novel bi-clustering approach, Bi-clustering 
differential-sparsity-constraints and dynamic-graph-
regularization (BCDD), designed to enhance cancer subtype 
classification by addressing limitations in existing sparse 
singular-value decomposition (SVD)-based approaches. 
The approach incorporated differential sparsity constraints, 
applying an L1/2-norm to genes and an L1-norm to samples, 
to reflect the inherent sparsity imbalance in cancer gene 
expression data. Additionally, a dynamic graph regularization 
strategy was proposed, which enabled iterative updates to the 
graph adjacency matrix based on changes in SVD to avoid bias 
introduced by previously extracted biclusters. For evaluations, 
the five datasets from TCGA37 were considered; these included 
the TCGA-BRCA dataset.17 The BCDD demonstrated superior 
bi-clustering ACC and robustness compared to state-of-
the-art methods, confirming its effectiveness in identifying 
biologically relevant gene modules.

Goidescu et al.38, aimed at exploring contribution of 
moderate/low risk gene mutations for hereditary breast 
cancer using multi-gene panel testing. Next-generation 
sequencing was used to analyze 255 breast cancer patients 
who met clinical criteria for genetic testing. Among the 104 
identified pathogenic variants, 21 were found in moderate-

risk genes (notably CHEK2 and ATM), three were found in low-
risk genes (MSH1 and MLH1), and eight were found in genes 
with insufficient evidence of risk. The analysis emphasized 
the clinical relevance of reporting less-penetrant mutations 
to enhance genetic risk assessment. Findings support 
expanding genetic screening to improve diagnostic precision, 
personalize treatment strategies, and refine breast cancer risk 
prediction models across populations. Rezaei et al.39, aimed 
to evaluate role of AI in enhancing breast cancer diagnosis 
and management through transcriptomic data analysis. 
A systematic search across databases including PubMed, 
Scopus, WoS, Embase, and IEEE Xplore identified 7,287 studies, 
of which 54 were selected for final analysis: 24 focused on 
RNA sequencing and 30 on GEP. The methodology involved 
screening by multiple reviewers and extraction of data on 
AI models and molecular techniques. Common AI methods 
included RF, CNNs, SVMs, and LASSO. These approaches 
demonstrated high potential in biomarker identification, 
prognosis prediction, and drug response optimization, 
though further large-scale validation and interdisciplinary 
research are needed.

Thâalbi and Akhloufi40 aimed at enhancing breast cancer gene 
expression prediction by introducing EMGP-Net, a novel DL 
architecture combining EfficientFormer and MambaVision. 
EMGP-Net was trained using a leave-one-patient-out method 
on the HER2+ dataset (8 patients)41 and validated externally 
on the STNet dataset (23 patients),42 with training alternating 
between the two datasets. The model integrated features 
from both architectures using attention mechanisms and 
dense layers to predict the expression of 250 selected genes. 
Evaluation using the Pearson correlation coefficient (PCC) 
showed superior performance, achieving a maximum PCC 
of 0.7903 for the PTMA gene. Chowdhury and Kamal43 aimed 
to develop an interpretable ML framework for classifying 
BRCA subtypes using RNA-sequencing data. The approach 
utilized the TCGA transcriptomic dataset,37 incorporating 
dimensionality reduction and performing hyperparameter 
tuning via grid search to optimize classification models. SHAP 
values were employed to identify significant transcriptomic 
markers relevant to subtype differentiation. The model’s 
performance was evaluated using metrics such as ACC, PRE, 
and FS, thereby demonstrating enhanced classification ACC 
and interpretability compared with existing approaches. 
Additionally, gene set enrichment analysis revealed key 
molecular pathways linked to BRCA subtypes, highlighting 
the method’s potential to support personalized prognosis 
and treatment planning in clinical settings.

Nasarudin et al.44, focused on developing an interpretable DL 
model for predicting breast cancer survival using METABRIC 
dataset.12 The approach integrated bidirectional (BiLSTM) 
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and CNN architectures with minimum redundancy maximum 
relevance (MRMR) for feature selection. Evaluations were 
conducted using METABRIC (n=1980) and TCGA-BRCA 
(n=1080) datasets, incorporating clinical data, copy number 
alterations, and gene expression profiles. Performance 
was assessed using ACC and AUC-ROC metrics. The model 
achieved 98% ACC on METABRIC and 96% on TCGA, 
outperforming existing methods. These findings suggest the 
model’s robustness and potential to support personalized 
treatment decisions in breast cancer care. Maigari et al.45 
aimed to review advancements in multimodal DL approaches 
for breast cancer survival prediction, focusing on architectures 
that integrated imaging, genomic, and clinical data. A 
systematic literature review was conducted using databases 
and search engines such as Google Scholar, Web of Science, 
and Scopus, from which 19 relevant studies were selected. 
These studies employed DL methods, particularly CNNs, to 
handle high-dimensional, heterogeneous data. Evaluation 
metrics included predictive ACC and model interpretability. 
Findings revealed that CNNs and hybrid models, including 
Graph Neural Networks, significantly improved prognostic 
ACC. However, gaps remain in dynamic modeling, multimodal 
integration, and explainability, underscoring the need for 
robust and interpretable solutions in PRE oncology.

Findings

This section presents the key findings derived from an 
extensive review of recent research on breast cancer prediction 
using ML and DL techniques. The studies were analyzed based 
on their methodologies, datasets, performance metrics, and 
model architectures. Emphasis was placed on understanding 
how different approaches handle data preprocessing, feature 
selection, and model evaluation. The findings are categorized 
to clarify trends and limitations in the existing literature. 
By identifying common practices and shortcomings, this 
section lays the foundation for recognizing research gaps 
and justifying the need for more robust, interpretable, and 
generalizable DL-based frameworks.

Literature Survey Findings

This section presents and discusses key findings from 
the reviewed literature; these findings are systematically 
summarized in Table 1. The table summarizes outcomes of 
various studies on breast cancer prediction, classification, 
and survival analysis that employed ML, DL, and hybrid 
techniques. It highlights the use of diverse datasets, such 
as METABRIC and TCGA-BRCA, and advanced models, such 
as LSTM, XGB, and DNN. The findings provide insights into 
the performance of different approaches in terms of ACC, 
interpretability, feature selection, and into their potential for 
clinical application in personalized cancer treatment.

Datasets Used

The literature review reveals that METABRIC12, TCGA-BRCA17, 
and CuMiDa14 are the most commonly used datasets for 
breast cancer research and analysis, as presented in Table 2. 
These datasets provide extensive genomic, transcriptomic, 
and clinical information, making them highly valuable 
for developing ML and DL models focused on prediction, 
classification, survival analysis, and personalized treatment 
planning.

The METABRIC12, TCGA-BRCA17, and CuMiDa14 datasets are 
described in detail below.

• METABRIC12: METABRIC is a widely used breast cancer dataset 
that includes clinical and genomic data from approximately 
2,000 patients. It provides gene expression profiles, somatic 
mutation data, copy number aberrations, and survival 
outcomes. The dataset is instrumental in building models for 
prognostic analysis, metastasis prediction, and clinical feature 
classification.

• TCGA-BRCA17: TCGA-BRCA dataset contains comprehensive 
multi-omic profiles, including mRNA expression, DNA 
methylation, copy number variations, and clinical annotations 
for over 1,000 breast cancer patients. It supports subtype 
classification, survival analysis, and biomarker discovery. It is a 
benchmark dataset for breast cancer ML/DL research because 
of its size, richness, and the availability of follow-up data.

• CuMiDa14: The Curated Microarray Database (CuMiDa) is a 
collection of microarray gene expression datasets covering 
various types of cancer, including breast, liver, lung, prostate, 
and kidney. It contains over 1,000 patient samples and is 
primarily used for multi-class classification, dimensionality 
reduction, and benchmarking optimization-based ML 
approaches.

Performance Metrics Used 

Performance evaluation plays a crucial role in assessing the 
effectiveness of ML and DL models in breast cancer prediction 
and analysis. Various studies have employed a range of metrics 
depending on the problem type, data balance, and model 
objective. The most commonly used metrics include ACC, PRE, 
REC, and FS, particularly for classification tasks. Other metrics, 
such as balanced accuracy (BAC), kappa (KAP), MCC, and 
AUC-ROC, are used for imbalanced datasets and multiclass 
classification tasks. PCC was adopted for expression-level 
prediction. Table 3 summarizes the performance metrics used 
in the reviewed studies.

Below are common performance metrics used in the literature 
and how they are calculated:
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ACC indicates the ratio of correctly predicted observations to 
total observations. 

(1)

where TP=True Postive, TN=True Negative, P=False Positive and 
N=False Negative.

PRE: Measures how many of the positively predicted instances 
are actually positive.

(2)

REC: Measures how many actual positive instances were 
correctly identified.

(3)

FS: The harmonic mean of precision and recall, balancing 
both.

(4)

Balanced Accuracy (BAC): Used when data is imbalanced. It is 
the average of sensitivity and specificity.

TABLE 1: Literature survey findings.

Reference Findings
11 An LSTM model achieved 98.7% accuracy using the multi-omics METABRIC dataset for survival prediction.
13 Dimensionality was reduced from 36,805 to 80 features, and balanced accuracy improved to 93.4%.
15 PCA- and MCC-based feature selection with a DNN improved classification performance.
16 RF and XGB achieved accuracies of 97.19% and 95.23%, respectively, and identified key proteins and miRNAs.
18 DIM model improved cancer-driver gene identification with strong cross-cancer generalization.
19 XGB and RF models achieved 72.7% accuracy in survival prediction using selected METABRIC features.
20 RecNN achieved an accuracy of 98.69% in predicting metastasis using LASSO-selected features.
21 SVM-RBF achieved 99.79% accuracy in predicting key clinical attributes from METABRIC data.
22 SVM performed best, with subtype-specific AUC-ROC scores of up to 100% for HER2 and Basal subtypes.
23 BCC improved subtyping accuracy and reclassified HER2-low as a distinct subtype.
25 The Gradient Boosting model achieved 86.4% test accuracy for the mastectomy class; age and relapse were key predictors.
26 KAO-AOA-SVM achieved an accuracy of 98.97% using only 15 genes to classify breast cancer.
27 XAI methods, such as SHAP, helped identify the top predictive genes; SVM and RF showed concordant rankings.
28 DL with SHAP achieved up to 100% accuracy and validated key genes, including ESR1 and KRT5.
31 DGBCox improved prognostic reliability across 12 datasets by addressing distributional shifts in the data.
32 Multimodal DL using mammograms and clinical data achieved an accuracy of 88.78%.
34 Integration of GEP with ABM improved survival prediction and tumor simulation accuracy.
35 An E2E classifier using mRNA image features achieved 99.91% accuracy.
36 The BCDD biclustering approach outperformed traditional SVD for subtype classification.
38 Identified moderate/low-risk gene mutations, supporting extended genetic screening.
39 A systematic review confirmed ML’s promise in diagnosis, biomarker discovery, and treatment prediction.
40 EMGP-net achieved high gene expression prediction accuracy, with a PCC of 0.7903 for PTMA.
43 An interpretable ML model using SHAP and enrichment analysis improved BRCA subtype classification.
44 BiLSTM-CNN with MRMR achieved accuracies of 98% (METABRIC) and 96% (TCGA).
45 The review identified CNNs and hybrid DL models as top performers in multimodal survival prediction.

METABRIC: The Molecular Taxonomy of Breast Cancer International Consortium; LSTM: Long short-term memory; PCA: Principal component analysis; MCC: 
Mathew’s correlation coefficient; XGB: eXtreme gradient-boosting; RF: Random forest; DIM: Dynamic-incentive-model; LASSO: Least-absolute-shrinkage and 
selection-operator; RecNN: Recursive-neural-network; SVM: Support vector machines; RBF: Radial basis function; AUC-ROC: Area under curve-receiver operating 
characteristic; HER2: Human epidermal growth factor receptor 2; KAO: Kashmiri-Apple optimization approach; AOA: Armadillo-optimization approach; SHAP: 
SHapley Additive exPlanations; DL: Deep learning; DGBCox: Deep-global balancing-cox regression; GEP: Gene expression profiling; ABM: Agent-based modelling; 
E2E: Ensemble-of-ensemble; BCDD: Bi-clustering differential-sparsity-constraints and dynamic-graph-regularization; SVD: Singular-value decomposition; ML: 
Machine learning; BiLSTM: Bi-directional long short-term memory; CNN: Convolutional neural network; MRMR: Minimum redundancy maximum relevance; 
TCGA: The cancer genome atlas.
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(5)

Kappa Coefficient (KAP): Measures agreement between 
predicted and actual labels while considering chance 
agreement.

(6)

	 where P0 denotes observed accuracy, Pe denotes 
expected accuracy by chance. 

MCC: Provides a balanced measure even for imbalanced 
datasets.

(7)

AUC-ROC (Area Under Curve - Receiver Operating 
Characteristic): Measures the ability of a classifier to 
distinguish between classes. Higher AUC indicates better 
model performance.

(8)

	 where PR=True Postive Rate, FPR=False Positive Rate.

The Pearson correlation coefficient (PCC) measures the linear 
correlation between predicted and true gene expression 
levels.

(9)

 xi	 where  and yi are predicted and actual values 
respectively.

ML and DL Models and Feature Extraction and Selection 
Approaches Used

ML and DL techniques have been widely adopted in breast 
cancer research for tasks such as classification, survival 
prediction, and biomarker identification. These models are 
often complemented with feature selection and feature 
extraction methods to enhance performance, reduce 
dimensionality, and improve interpretability. Feature selection 
techniques, such as LASSO, MCC, and MRMR, help identify the 
most relevant variables, whereas extraction methods, such as 
PCA and autoencoders transform raw data into meaningful 
representations. Table 4 provides a comprehensive overview 
of the reviewed studies, highlighting the use of ML, DL, 
feature selection, and feature extraction techniques across 
different research efforts in this domain.

Issues and Challenges

This section discusses the issues and challenges. Table 5 
summarizes the key issues and challenges identified in 
existing ML and DL approaches for breast cancer prediction 
and analysis. While many studies have demonstrated high 
performance, they often exhibit limitations, such as the 
exclusive use of ML or DL without cross-paradigm validation. 
Additionally, several works rely on basic or outdated feature 
selection methods, which may not adequately capture 
complex biological interactions. In some studies, feature 
extraction methods such as PCA or VAE, though effective for 
dimensionality reduction, can lead to a loss of interpretability 
or of biologically relevant information. Another significant 
issue across studies is the limited generalizability and lack of 
external validation, particularly when using small datasets or 
omics-specific models. Furthermore, imbalanced datasets, 
overfitting, and inconsistent benchmarking between ML and 
DL approaches affect the deployment of robust models in 
clinical settings.

TABLE 3: Performance metrics used in reviewed studies.

Reference Performance metrics used
11, 15, 16, 19-22,25-28, 43, 44 Accuracy, precision, recall, F1-score 

13
Balanced accuracy score, F1-score, 
precision, recall, kappa, Matthews 
correlation coefficient

23, 36 Area under the curve-receiver 
operating characteristic

31, 34, 38, 39 Custom metrics, statistical validation, 
interpretability-based assessments

40 Pearson correlation coefficient

TABLE 2: Dataset used in existing works.

Reference Dataset used
11,15, 19, 20, 21, 23, 25, 44 METABRIC12

13, 28 CuMiDa14

16, 22, 23, 27, 30, 36, 43, 44 TCGA-BRCA17

24 SCAN-B

32 CMMD33

31 12 breast cancer datasets

38 Custom gene panel sequencing
41, 42 HER2+, STNet
29 ArrayExpress (E-MTAB-3732)
37 TCGA (multiple, including BRCA)

METABRIC: The Molecular Taxonomy of Breast Cancer International 
Consortium; HER2: Human epidermal growth factor receptor 2; TCGA: 
The cancer genome atlas; BRCA: Breast invasive carcinoma; CuMiDa: The 
curated microarray database; CMMD: Chinese mammography database; 
SCAN-B: The Sweden Cancerome Analysis Network-Breast.
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The reviewed literature reveals notable progress in breast 
cancer prediction using ML and DL, but also highlights critical 
limitations in existing approaches. Many studies rely on 
either ML or DL alone, missing opportunities to leverage the 
strengths of both. ML models often offer high interpretability 
but may struggle with complex, non-linear patterns in omics 
data. On the other hand, DL models like CNNs, RNNs, and 
AEs provide superior feature representation and predictive 
ACC, but are frequently criticized for their black-box nature 
and high computational complexity. Feature selection 
techniques are often rudimentary, leading to suboptimal 
model performance, whereas feature extraction methods 

may reduce interpretability. Moreover, several approaches 
demonstrate promising results in limited datasets, but fail 
to generalize across diverse cohorts due to inadequate 
validation strategies. This underscores the growing need 
for DL-based frameworks that not only capture high-
dimensional, nonlinear patterns in multi-omic and imaging 
data but also integrate explainability and domain knowledge. 
Combining DL with advanced feature selection and robust 
external validation could pave the way for more accurate, 
interpretable, and clinically applicable cancer prediction 
models, ultimately contributing to personalized and PRE 
oncology.

TABLE 4: Overview of ML, DL, feature selection, and feature extraction usage by existing literature review.

Reference ML DL Feature selection Feature extraction
11 No Yes (GCN, LSTM, VAE) Yes (preprocessing) Yes (VAE)
13 Yes (SVM, NB, DT, RF) No Yes (RO+entropy) Yes (PCA, ICA, SAE)
15 No Yes (DNN) Yes (MCC-based) Yes (PCA)

16 Yes (RF, SVM, DT, GNB, KNN, 
XGB) No Yes (gene analysis) Yes (pathway & network analysis)

18 No No Yes (NFS-based DIM) Yes (hypergraph+PPI)
19 Yes (XGB, RF, SVM, KNN) No Yes (top-k XGB features) No
20 No Yes (RecNN) Yes (LASSO) Yes (NER)
21 Yes (SVM, LR, RF, Ensemble) No Yes (preprocessing) No
22 Yes (NB, KNN, SVM, RF) No Yes (LASSO, mCGA) No
23 Yes Yes (BCC) Yes (subtype refinement) Yes (RNA-seq embedding)
25 Yes (DT, XGB, SVM, LR, etc.) No Yes (SMOTE+feature selection) No
26 Yes (SVM) No Yes (KAO+AOA) Yes (gene subset search)
27 Yes (KNN, SVM, RF) No Yes (LOCI+SHAP) No
28 No Yes (DL+SHAP) Yes (SHAP genes) Yes (ensemble learning)

31 No Yes (DAE, DGBCox) Yes (causal feature balancing) Yes (latent representation via 
DAE)

32 Yes (meta-classification) Yes (DL with 
imaging) Yes (metadata analysis) Yes (CNN for images)

34 Yes No Yes (key gene identification) Yes (agent-based modeling)
35 Yes (E2E: XGB, RF, AB, etc.) Yes (AlexNet, ResNet) Yes (SMOTE) Yes (image transformation)
36 Yes No Yes (sparsity-based) Yes (SVD+graph regularization)
38 No No Yes (gene panel filtering) No
39 Yes Yes Yes (reviewed LASSO, RF, etc.) No

40 No Yes (EMGP-net) Yes (top 250 genes) Yes 
(efficientformer+mambavision)

43 Yes No Yes (SHAP+hyperparameter tuning) Yes (dimensionality reduction)
44 Yes Yes (BiLSTM+CNN) Yes (MRMR) Yes (multi-omic integration)
45 No (review) Yes Yes (reviewed techniques) Yes (imaging+genomic fusion)

DL: Deep learning; ML: Machine learning; SVM: Support vector machines; GCN: Graph-convolutional networks; LSTM: Long short-term memory; VAE: Variational 
autoencoders; NB: Naïve bayes; RF: Random forest; DT: Decision tree; GNB: Gaussian NB; KNN: K-nearest neighbors; XGB: eXtreme gradient-boosting; LR: Logistic-
regression; E2E: Ensemble-of-ensemble; AB: AdaBoost; KAO: Kashmiri-apple optimization approach; AOA: Armadillo-optimization approach; LOCI: Leaving-one-
covariate-in; SHAP: SHapley additive exPlanations; SMOTE: Synthetic minority oversampling technique; CNN: Convolutional neural network; SVD: Singular-value 
decomposition; MRMR: Minimum redundancy maximum relevance; BiLSTM: Bi-directional long short-term memory; RO: Remora-optimization; MCC: Mathew’s 
correlation coefficient; NFS: Network-functional-score; DIM: Dynamic-incentive-model; PCA: Principal component analysis; SAE: Sparse auto-encoder; ICA: 
Independent component analysis; PPI: Protein-protein interaction; LASSO: Least-absolute-shrinkage and selection-operator.
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CONCLUSION

Breast cancer remains one of the most critical health challenges 

affecting women worldwide, with early and accurate diagnosis 

being essential for effective treatment and improved survival 

rates. This work began with a comprehensive review of ML 

and DL approaches applied to breast cancer prediction and 

classification. Although numerous studies have attempted to 

use ML and DL models with various genomic, transcriptomic, 
and clinical datasets, significant limitations persist. Common 
issues include over-reliance on either ML or DL models, lack 
of generalization, inadequate feature selection or extraction 
techniques, and inconsistent performance metrics across 
datasets. The research identified key gaps such as limited 
integration of multi-modal data, poor interpretability, and the 
absence of robust, unified frameworks capable of handling 

TABLE 5: Issues and challenges in existing approaches.

Reference Issues and challenges
11 DL-only method; no ML-to-DL comparison; potential loss of interpretable features during feature extraction using VAE.

13 Despite extensive feature extraction, ML-based classifiers may reach a performance plateau; BAC increased, but remained 
subpar for all classes.

15 PCA may ignore biologically significant features; however, the DL technique employed lacks diversity in classifiers.

16 Solely employs machine learning; fails to investigate DL models, which could more effectively capture non-linear 
dependencies; although gene-level network analysis is intricate, it might overlook more profound patterns.

18 Depends on network-based scoring (DIM), which might not generalize to noisy datasets; lacks DL/ML categorization.

19 The accuracy is comparatively low (72.7%); the feature-extraction approach is not robust; the feature selection is restricted to 
the top-k features via XGB.

20 RecNN is used, but no ML comparison is made. LASSO may fail to detect interactions among nonlinear features.
21 The study is ML-only; feature selection is straightforward, and DL is not used for deeper representation learning.

22 LASSO and mCGA were employed; however, no DL comparison was conducted. The biomarker finding was robust; however, 
there was no evidence of generalizability.

23 DL-based subtyping, but there isn’t any obvious external validation; RNA-seq embeddings might vary depending on the 
dataset.

25 ML models were used; GB performed well, but test accuracy declined, suggesting overfitting.
26 DL is not integrated by ML with hybrid feature selection, which is restricted to classification without biological interpretability.

27 No DL model is employed; explainability is prioritized, yet predictive power may be weak; feature selection may overlook 
latent features.

28 Although the DL model is reliable, it does not integrate biological pathway information, and its generalizability has been 
validated only on a small number of datasets.

31 When DL is applied to causal inference, its complexity increases, and its interpretability and clinical applicability are 
constrained.

32 Multi-modal DL may require improved feature fusion, although its accuracy (88.78%) is lower than that of DL-only methods.
34 No DL model; ABM lacks real-time flexibility and is strong for simulation but not predictive.

35 High performance can be achieved using complex ensemble methods and DL; however, model interpretability and 
computational cost remain significant obstacles.

36 There is no DL; bi-clustering and graph regularization are heavily used; interpretability is good but not predictively validated.
38 Gene panel analysis may overlook new biomarkers in more recent datasets because it is not inherently predictive.
39 Review; draws attention to the lack of extensive validation across datasets and the inconsistency in ML/DL model comparison.

40 The validation dataset for the gene expression-focused DL model is modest (8 and 23 patients), raising concerns about its 
generalizability.

43 Strong interpretability ML model without DL benchmarking; robustness may be impacted by gene expression variability.

44 Although BiLSTM+CNN works effectively, it is complex and difficult to interpret, and MRMR selection may exclude synergistic 
genes.

45 Multimodal DL techniques are reviewed; however, the incorporation of dynamic patient data and explainability remain two 
main gaps.

DL: Deep learning; ML: Machine learning; VAE: Variational autoencoders; BAC: Balanced accuracy score; PCA: Principal component analysis; DIM: Dynamic-
incentive-model; XGB: eXtreme gradient-boosting; LASSO: Least-absolute-shrinkage and selection-operator; RecNN: Recursive-neural-network; CNN: 
Convolutional neural network; BiLSTM: Bi-directional long short-term memory; ABM: Agent-based modelling; MRMR: Minimum redundancy maximum 
relevance; GB: Gradient-boosting.



Jadhav and Patil. 

﻿

complex and high-dimensional gene expression data. In 
response, the problem statement was formulated to address 
the need for a more accurate and generalizable approach 
to breast cancer classification. The objectives included 
analyzing existing techniques, identifying their limitations, 
and proposing a way forward. A systematic methodology was 
adopted, including a literature review, dataset exploration, 
evaluation of performance metrics, and comparison of ML and 
DL models. Findings revealed that DL models generally offer 
superior performance but suffer from a lack of transparency 
and consistency when applied across different datasets. 
Future work will involve developing a novel DL-based 
framework that incorporates advanced feature extraction and 
selection methods. The proposed system will be trained and 
validated using diverse datasets, such as CuMIDA, METABRIC, 
and TCGA-BRCA. The goal is to accurately predict and classify 
various subtypes of breast cancer while ensuring high 
interpretability, robustness, and clinical relevance.
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