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ABSTRACT

Breast cancer is a leading cause of cancer-related mortality among women worldwide, making early and accurate diagnosis essential for effective
treatment and improved patient outcomes. In recent years, machine learning (ML) and deep learning (DL) techniques have emerged as promising
tools for predicting and classifying breast cancer using gene expression and clinical data. However, existing studies face several limitations. Many rely
solely on ML or DL approaches, lack comprehensive strategies for feature selection or extraction, and demonstrate inconsistent performance across
datasets. These gaps result in models that are insufficiently accurate, uninterpretable, or unable to generalize well to unseen data. This work aims to
address these challenges by conducting a detailed literature survey of existing ML and DL models applied to breast cancer prediction. The objectives
include identifying common datasets, performance metrics, model types, and feature-engineering techniques. A structured methodology was followed
to analyze peer-reviewed studies and extract trends in performance and limitations. Findings show that, while DL models outperform traditional ML in
terms of accuracy, they often lack transparency and robust feature engineering. In conclusion, a unified approach combining advanced feature selection

and extraction methods with DL techniques is necessary to develop accurate, generalizable breast cancer prediction systems.
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INTRODUCTION

Cancer is one of the leading causes of death worldwide and
is characterized by the uncontrolled growth and spread of
abnormal cells in the body. These cells can invade surrounding
tissues and metastasize to distant organs, making the
disease highly complex and difficult to treat in its advanced
stages. Cancer originates from genetic mutations, which are
often triggered by environmental factors, lifestyle choices,
hereditary predispositions, or a combination of these."? As
the disease progresses, it disrupts the normal functioning of
vital organs and systems, ultimately resulting in significant
morbidity and mortality. There are many different types
of cancer, each named after the organ or tissue where it
originates. The most common types include lung cancer,
prostate cancer, breast cancer, colorectal cancer, and liver
cancer. Others, such as pancreatic, ovarian, and brain cancers,
are less common but often more aggressive. Each type of

cancer has unique characteristics, progression patterns, and
treatment protocols. Among these, breast cancer is the most
commonly diagnosed cancer in women globally and is also a
leading cause of cancer-related mortality in women.>#

Breast cancer originates in the breast tissue, typically in the
ducts or lobules. The disease begins when cells in the breast
mutate and grow uncontrollably, forming a tumor. In many
cases, these tumors can become malignant, meaning they
have the potential to spread to other parts of the body. Factors
contributing to the occurrence of breast cancer include age,
genetic mutations (such as BRCAT and BRCA2), hormonal
imbalances, lifestyle factors (e.g., alcohol consumption,
obesity), and family history.® According to the World Health
Organization (WHO), breast cancer has surpassed lung cancer
as the most diagnosed cancer globally. In its 2021 report,
WHO estimated that in 2020, 2.3 million women worldwide
were diagnosed with breast cancer and 685,000 died from
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it.> These alarming statistics highlight the pressing need for
improved diagnostic and prognostic tools for early detection
and effective treatment planning. Moreover, breast cancer
can be identified using various forms of data. Imaging
techniques such as mammography, ultrasound, and magnetic
resonance imaging are widely used in clinical settings for
tumor detection and localization.” Recently, gene expression
data have emerged as a powerful source for understanding
the molecular mechanisms underlying breast cancer.® Gene
expression profiling (GEP) offers a more granular view by
identifying genes that are overexpressed or underexpressed,
aiding early diagnosis, subtype classification, and survival
prediction.

However, most current research is primarily focused on
imaging-based analysis using machine learning (ML) and deep
learning (DL).2"° In contrast, comparatively little attention has
been given to gene expression data, despite its rich potential
for molecular-level insights. Among the existing studies that
utilize gene expression data, a significant proportion rely
on traditional ML models such as support vector machines
(SVM), random forests (RF), and Naive Bayes (NB), with limited
exploration of novel or hybrid approaches. Moreover, only
a few studies have employed DL for gene expression-based
breast cancer prediction or survival analysis, and those that
have done so have not demonstrated consistently high
performance or robustness. This gap indicates the need for a
focused review and analysis of existing methods in this area.
To address this, the present study conducts a comprehensive
review of recent works published between 2024 and 2025,
selected from a pool of 150 papers retrieved from IEEE, Google
Scholar, Web of Science, and Scopus. After outdated and less
relevant papers were discarded, 25 papers were chosen for
in-depth analysis. The main goal of this work was to explore
and evaluate current methodologies, datasets, performance
metrics, and predictive accuracies in breast cancer detection
and gene expression analysis. The contributions of this work
are as follows:

- Conducts a comprehensive review of recent (2024-2025)
literature focused on breast cancer detection using gene
expression data.

« Twenty-five carefully selected papers were analyzed from
an initial pool of 150 retrieved from reputable sources such
as IEEE, Web of Science, Scopus, and Google Scholar.

- Highlights the research gap where most studies are
focused on imaging data, while gene expression data
remains underexplored.

- Demonstrates that existing gene expression studies largely
use basic ML models with limited application of novel or
advanced techniques.

» Shows that DL methods applied to gene expression have
not achieved high predictive accuracy (ACC) or model
robustness.

« Categorizes existing approaches based on datasets,
performance metrics, and models used, offering clear
insight into current research trends.

« Provides a foundation for future work, encouraging
the development of novel DL architectures specifically
designed for gene expression-based breast cancer
prediction and survival analysis.

This manuscript is structured to provide a comprehensive
analysis of ML and DL approaches in breast cancer prediction.
Section Il presents the literature review, covering existing
methodologies and related work. Section Il discusses
the findings from the reviewed studies, divided into four
subsections: 3.1 Literature Survey Findings, 3.2 Datasets
Used, 3.3 Performance Metrics Used, and 3.4 ML and DL
Models with Feature Extraction and Selection Approaches.
Section IV highlights the issues and challenges identified in
current research. Finally, section V concludes the study with a
summary of insights.

Literature Survey

The literature survey explores recent advancements in
breast cancer prediction, classification, and survival analysis
using ML and DL approaches. Various studies utilized multi-
omic datasets, such as the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC) and The Cancer
Genome Atlas-Breast Invasive Carcinoma (TCGA-BRCA),
integrating clinical, genomic, and imaging data to enhance
predictive ACC and personalize treatment. Various strategies
were applied to feature selection, classification, and survival
prediction. For instance, Mahmoud et al."" to develop an
advanced genomics-based architecture for predicting breast
cancer survival in order to address disease variability and
complexity. In this study, the multi-omic METABRIC dataset,
which includes clinical data, somatic mutations, and gene
expression from a large patient cohort, was integrated and
pre-processed. This work employed DL approaches, including
Graph-Convolutional Networks (GCN), Long Short-Term
Memory (LSTM), and Variational Autoencoders (VAE), which
were trained using a stochastic gradient descent optimization
approach with an 80:20 train-test split. Evaluations were
conducted using specificity, sensitivity/recall (REC), and ACC.
The findings showed that among VAE, GCN, and LSTM, LSTM
achieved 98.7% ACC. The findings show that integration of
multi-omic data within an optimized DL approach improves
the ACC of survival prediction and enables more effective,
personalized treatment strategies.




Bharanidharan et al.”®, aimed at designing computational
accurate/efficient system for cancer detection across five
regions, i.e., renal (kidney), prostate, lung, liver and breast. For
this study, the microarray dataset from 1027 patients, sourced
from CuMiD,a'* was considered. This work utilized Sparse Auto-
Encoder, Independent Component Analysis and Principal
Component Analysis (PCA) for dimensionality reduction of
the dataset, and employed Remora-Optimization, guided by
a local entropy-based fitness function, to enhance feature
transformation and classification ACC. For classification, SVM,
NB, decision tree (DT), and RF were utilized. For the evaluation
of this study, six performance metrics, i.e.,, REC, balanced
ACC score (BAC), F-score (FS), precision (PRE), Cohen'’s kappa
coefficient (KAP), and Matthews correlation coefficient
(MCCQ), were utilized. Results show that dimensionality was
reduced from 36,805 to 80 features, with average balanced
ACC improving to 93.4%, compared with 82.7% without the
proposed approach. Kishore Khan et al.’ aimed to develop
an effective breast cancer classification approach using the
METABRIC dataset.’? This work included data preprocessing,
dimensionality reduction using PCA, and MCC-based feature
selection. Further, a deep neural network (DNN) was used; it
was enhanced with dropout layers, and early stopping was
applied during training on selected features using MCC. The
performance was evaluated using ACC, PRE, REC, and FS,
alongside gene expression visualization. Results show that
dimensionality reduction provided a boost in classification
performance, resulting in higher ACC.

Das et al.’® focused on enhancing breast cancer staging and
classification by integrating ML with bioinformatics analyses
using gene expression data from TCGA-BRCA dataset."” The
methodology of this work involved the identification of
differentially expressed genes and their analysis using protein-
protein interaction, regulatory-network, and signaling-
pathway approaches to uncover potential therapeutic targets.
The ML models used included RF, SVM, DT, Gaussian NB (GNB),
K-Nearest Neighbors (KNN), and eXtreme Gradient Boosting
(XGB) for classification of cancer stage and cancer subtype. For
evaluation, ACC, PRE, REC, FS, and specificity were considered.
Evaluations showed that RF and XGB achieved better results,
reaching 97.19% and 95.23%, respectively. Findings show
that key proteins and micro ribonucleic acids (miRNAs) are
potential biomarkers, demonstrating the method’s potential
to advance personalized treatment approaches. Hu et al.’é,
aimed at enhancing identification of cancer-driver genes
by addressing limitation in existing approaches related to
feature relationships and noise in protein-protein interaction
(PPI) data. This work utilized a dynamic-incentive-model
(DIM) to construct a hypergraph to minimize false positives
in PPl networks. Gene importance within hyperedges was
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assessed using Network Functional score (NFS), and DIM
integrates NFS with miRNA and messenger RNA (mRNA)
differential expression scores. The DIM was evaluated on
pan-cancer, prostate cancer, lung cancer, and breast cancer
datasets. The evaluation was performed using the area under
the receiver operating characteristic curve (AUC-ROC), with
DIM outperforming existing approaches and demonstrating
strong cross-cancer generalization, thereby improving
targeted gene discovery.

Kurniadi and Saputri’ aimed to investigate breast-cancer
survivability using multi-modal data from the METABRIC
dataset.’? Because the dataset is high-dimensional, this work
used XGB to select top-k features. This work further utilized
ML classifiers (XGB, RF, SVM, and KNN) using selected features.
The evaluation metrics used for the study included ACC, PRE,
REC, and FS. Findings show that XGB and RF achieved the
highest ACC (72.7%). Findings show that feature optimization
is important for achieving good performance in survival
prediction. Brahmatej Rupavath et al.?® aimed to improve
metastasis prediction in breast cancer by using a recursive
neural network (RecNN) and the METABRIC dataset'?, which
provides comprehensive genomic information. The approach
included data preprocessing using named-entity recognition
for structured classification and feature selection using Least
Absolute Shrinkage and Selection Operator (LASSO). In this
work, the RecNN was applied to predict metastasis on the
basis of selected features. For evaluation, ACC, PRE, REC,
and FS were considered; the RecNN achieved 98.69% ACC,
outperforming approaches such as CNN.

Puttegowda et al.?!, aimed at improving breast-cancer and
personalized treatment by predicting key-clinical attributes,
i.e., cancer subtype, tumor stage and progesterone-receptor
status utilizing ML. For this study, the METABRIC dataset
was utilized, which provides extensive clinical and genomic
information. In this study, classification was performed using
logistic-regression (LR), SVM, RF, and an ensemble of these
approaches. Evaluations were conducted with respect to
ACC, with SVM-radial basis function achieving 99.79% ACC,
SVM achieving 97.93% ACC, RF achieving 97.59% ACC, and
LR achieving 89.45% ACC. Findings show the effectiveness
of non-linear models in capturing complex patterns,
achieving prognostic ACC, and supporting personalized
cancer treatment planning. Ghosh et al.?? focused on the
identification of subtype-specific gene biomarkers for breast
cancer, utilizing gene expression data to support precise
treatment and classification. For this study, the TCGA-BRCA
dataset'” was utilized. The methodology involved feature
selection using LASSO, which was combined with four ML
approaches (i.e, NB, KNN, SVM, and RF) to determine the
best approach, with SVM achieving the best performance.
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Furthermore, a modified Compact Genetic Approach (mCGA)
was employed to refine biomarker selection for subtypes
[basal-like, human epidermal growth factor receptor 2 (HER2)-
enriched, Luminal B, and Luminal A]. Evaluations showed
AUC-ROC values of 100% for HER2 and Basal, 97.31%, and
98.78% for Luminal A. The pathway and enrichment analyses
demonstrated biological relevance.

Turova et al., aimed at improving breast-cancer subtyping
by introducing breast-cancer classifier (BCC), a ML-based
approach which utilizes RNA-sequence data for addressing
limitation in current approaches like Immunohisto-Chemistry
and PAM50, which are particularly focused in identifying
HER2-low sub-type. In their study, data from TCGA-BRCA,"
SCAN-B cohorts,* and METABRIC™? were considered, from
which the BCC was developed. The approach involved
training BCC to classify breast-cancer subtypes, with a
focus on distinguishing HER2-low as a unique group and
reclassifying PAM50’s normal subtype. Statistical analysis
showed that BCC had high ACC. Findings show prognostic
similarities between HER2-low and basal subtypes. Findings
show that BCC's approach has potential to enhance treatment
stratification and to deepen molecular understanding of
breast cancer. Asfaw and Tegaw? aimed to compare survival
outcomes of breast cancer patients undergoing mastectomy
versus breast-conserving surgery (BCS) using ML approaches.
This study utilized the METABRIC dataset,’? which was first
preprocessed using an imputation approach, then subjected
to a Synthetic Minority Oversampling Technique (SMOTE)-
based class-balancing approach, and finally underwent
feature selection. For classification, DT, XGB, LR, GNB, RF,
KNN, SVM, AdaBoost, and Gradient-Boosting (GB) were
used; GB achieved 95.4% training and 86.4% testing ACC for
mastectomy class. For the BCS class, GB achieved training and
testing ACCs of 94.6% and 82.8%, respectively. The important
features included age, the Nottingham Prognostic Index, and
relapse-free status. Findings showed that younger patients
derived greater benefit from BCS, supporting personalized
treatment approaches.

Yagoob and Verma?® aimed to enhance breast cancer
classification using gene-expression data by introducing
a hybrid feature-selection approach that combined the
Kashmiri-Apple Optimization Approach (KAO) and Armadillo-
Optimization Approach (AOA), followed by an SVM classifier.
The KAO was employed for global exploration of informative
genes, while AOA performed local refinement to reduce
redundancy and prevent premature convergence. The KAO-
AOA-SVM was applied to breast cancer datasets, achieving
98.97% ACC using only 15 genes. The approach demonstrated
consistent performance across gene subsets, indicating
robustness and potential for clinical and cross-cancer

applications. Kallah-Dagadu et al.*, aimed at enhancing
breast-cancer prediction by identification of key-genes using
ML and explainable Al (XA) approaches. This study used the
TCGA-BRCA' dataset, which contained 1,208 samples and
3,602 gene features. In this work, KNN, SVM, and RF were
applied with feature selection. The XAl approaches included
accumulated local effects, partial dependence plots, and
SHapley Additive exPlanations (SHAP) values, which were
used to interpret model outputs and assess gene importance.
The leaving-one-covariate-in approach was used to identify
the top ten predictive genes, with SVM and RF rankings closely
aligned. The Findings showed the value of explainability in
ML-driven cancer diagnosis for improving clinical decision-
making.

Aliouane et al.?® aimed to improve breast cancer classification
by integrating a DL approach with SHAP to interpret gene
expression data. The approach involved training a DL
model and evaluating it using 5-fold cross-validation and
ensemble learning on the ArrayExpress (E-MTAB-3732)
dataset,”® achieving a mean ACC of 99.64%. To assess
generalizability, the CuMiDa dataset’ was utilized; it
comprises only three databases (GSE42568, GSE7904, and
GSE45827), which achieved ACCs of 99.14%, 100%, and
98.67%, respectively. SHAP analysis identified key genes,
including KRT5, ESR1, KRT19, and DSCAM-AS1. Further
validation using the MalaCards®*® database demonstrated
the relevance of genes, providing evidence of the method'’s
effectiveness for biomarker interpretability and discovery.
Li et al.®" aimed to develop a stable and accurate approach
for breast cancer prognosis that addressed data distribution
shifts across diverse datasets; they presented a model called
Deep-Global Balancing-Cox Regression (DGBCox), which
integrated causal inference with DP. The gene-expression
data were first transformed into latent representations using
a deep autoencoder, and the resulting representations were
then balanced using a causality-based approach. Causal
features were selected using balanced representations for
survival prediction. The DGBCox was evaluated on twelve
breast cancer datasets, on which it outperformed existing
benchmark approaches in both stability and predictive ACC,
demonstrating effectiveness in heterogeneous data scenarios
and improving prognostic reliability.

Rabah et al3? aimed to enhance noninvasive breast cancer
subtype classification by developing a multi-modal DL
approach that combined mammography images with
clinical metadata. Utilizing the Chinese Mammography
Database®®, which contains 4,056 mammography images
from 1,775 patients, the approach classifies breast lesions
into five classes: triple-negative, HER2-enriched, Luminal
B, Luminal A, and benign. The approach integrated image




and clinical data, and its performance was evaluated using
AUC, achieving 88.78% ACC. Sridharan and Ghosh** aimed
to enhance breast cancer survival prediction by integrating
GEP data with agent-based modelling (ABM). The approach
first identified key genes involved in cancer progression using
GEP, and then constructed a model representing how genes
influence cellular behavior. These insights were incorporated
into ABM to simulate tumor growth and treatment response
under various conditions. The predictive performance of
the GEP-ABM was validated using actual patient data and
benchmarked against existing approaches using ACC-based
metrics. Findings suggest that GEP-ABM integration improves
survival predictions and supports more personalized, data-
driven breast cancer treatment strategies.

Kunta and Lepakshi®** aimed at developing ascalable, non-
invasive solution for breast cancer detection using mRNA gene
expression data. The approach involved transforming one-
dimensional MRNA sequences into two-dimensional images
to capture spatial information. After standard preprocessing
and applying SMOTE for class balancing, features were
extracted using AlexNet and ResNet101 to mitigate issues
such as local feature dependence and vanishing gradients.
These features were further combined and used to train an
Ensemble-of-Ensemble classifier, which incorporated XGB, RF,
AB, bagging, and extra-trees for consensus-based prediction.
When evaluated on gene expression data, the model achieved
99.91% ACC, confirming its robustness and applicability. Li et
al.3¢ presented a novel bi-clustering approach, Bi-clustering
differential-sparsity-constraints and dynamic-graph-
regularization (BCDD), designed to enhance cancer subtype
classification by addressing limitations in existing sparse
singular-value decomposition (SVD)-based approaches.
The approach incorporated differential sparsity constraints,
applying an L1/2-norm to genes and an L1-norm to samples,
to reflect the inherent sparsity imbalance in cancer gene
expression data. Additionally, a dynamic graph regularization
strategy was proposed, which enabled iterative updates to the
graph adjacency matrix based on changes in SVD to avoid bias
introduced by previously extracted biclusters. For evaluations,
the five datasets from TCGA3 were considered; these included
the TCGA-BRCA dataset."” The BCDD demonstrated superior
bi-clustering ACC and robustness compared to state-of-
the-art methods, confirming its effectiveness in identifying
biologically relevant gene modules.

Goidescuet al*®, aimed at exploring contribution of
moderate/low risk gene mutations for hereditary breast
cancer using multi-gene panel testing. Next-generation
sequencing was used to analyze 255 breast cancer patients
who met clinical criteria for genetic testing. Among the 104
identified pathogenic variants, 21 were found in moderate-
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risk genes (notably CHEK2 and ATM), three were found in low-
risk genes (MSH1 and MLH1), and eight were found in genes
with insufficient evidence of risk. The analysis emphasized
the clinical relevance of reporting less-penetrant mutations
to enhance genetic risk assessment. Findings support
expanding genetic screening to improve diagnostic precision,
personalize treatment strategies, and refine breast cancer risk
prediction models across populations. Rezaei et al.*°, aimed
to evaluate role of Al in enhancing breast cancer diagnosis
and management through transcriptomic data analysis.
A systematic search across databases including PubMed,
Scopus, WoS, Embase, and IEEE Xplore identified 7,287 studies,
of which 54 were selected for final analysis: 24 focused on
RNA sequencing and 30 on GEP. The methodology involved
screening by multiple reviewers and extraction of data on
Al models and molecular techniques. Common Al methods
included RF, CNNs, SVMs, and LASSO. These approaches
demonstrated high potential in biomarker identification,
prognosis prediction, and drug response optimization,
though further large-scale validation and interdisciplinary
research are needed.

Thaalbiand Akhloufi*® aimed at enhancing breast cancer gene
expression prediction by introducing EMGP-Net, a novel DL
architecture combining EfficientFormer and MambaVision.
EMGP-Net was trained using a leave-one-patient-out method
on the HER2+ dataset (8 patients)*’ and validated externally
on the STNet dataset (23 patients),*> with training alternating
between the two datasets. The model integrated features
from both architectures using attention mechanisms and
dense layers to predict the expression of 250 selected genes.
Evaluation using the Pearson correlation coefficient (PCC)
showed superior performance, achieving a maximum PCC
of 0.7903 for the PTMA gene. Chowdhury and Kamal* aimed
to develop an interpretable ML framework for classifying
BRCA subtypes using RNA-sequencing data. The approach
utilized the TCGA transcriptomic dataset,®” incorporating
dimensionality reduction and performing hyperparameter
tuning via grid search to optimize classification models. SHAP
values were employed to identify significant transcriptomic
markers relevant to subtype differentiation. The model’s
performance was evaluated using metrics such as ACC, PRE,
and FS, thereby demonstrating enhanced classification ACC
and interpretability compared with existing approaches.
Additionally, gene set enrichment analysis revealed key
molecular pathways linked to BRCA subtypes, highlighting
the method’s potential to support personalized prognosis
and treatment planning in clinical settings.

Nasarudin et al.*4, focused on developing an interpretable DL
model for predicting breast cancer survival using METABRIC
dataset.”? The approach integrated bidirectional (BiLSTM)
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and CNN architectures with minimum redundancy maximum
relevance (MRMR) for feature selection. Evaluations were
conducted using METABRIC (n=1980) and TCGA-BRCA
(n=1080) datasets, incorporating clinical data, copy number
alterations, and gene expression profiles. Performance
was assessed using ACC and AUC-ROC metrics. The model
achieved 98% ACC on METABRIC and 96% on TCGA,
outperforming existing methods. These findings suggest the
model’s robustness and potential to support personalized
treatment decisions in breast cancer care. Maigari et al.*
aimed to review advancements in multimodal DL approaches
for breast cancer survival prediction, focusing on architectures
that integrated imaging, genomic, and clinical data. A
systematic literature review was conducted using databases
and search engines such as Google Scholar, Web of Science,
and Scopus, from which 19 relevant studies were selected.
These studies employed DL methods, particularly CNNs, to
handle high-dimensional, heterogeneous data. Evaluation
metrics included predictive ACC and model interpretability.
Findings revealed that CNNs and hybrid models, including
Graph Neural Networks, significantly improved prognostic
ACC. However, gaps remain in dynamic modeling, multimodal
integration, and explainability, underscoring the need for
robust and interpretable solutions in PRE oncology.

Findings

This section presents the key findings derived from an
extensivereview of recentresearch on breast cancer prediction
using ML and DL techniques. The studies were analyzed based
on their methodologies, datasets, performance metrics, and
model architectures. Emphasis was placed on understanding
how different approaches handle data preprocessing, feature
selection, and model evaluation. The findings are categorized
to clarify trends and limitations in the existing literature.
By identifying common practices and shortcomings, this
section lays the foundation for recognizing research gaps
and justifying the need for more robust, interpretable, and
generalizable DL-based frameworks.

Literature Survey Findings

This section presents and discusses key findings from
the reviewed literature; these findings are systematically
summarized in Table 1. The table summarizes outcomes of
various studies on breast cancer prediction, classification,
and survival analysis that employed ML, DL, and hybrid
techniques. It highlights the use of diverse datasets, such
as METABRIC and TCGA-BRCA, and advanced models, such
as LSTM, XGB, and DNN. The findings provide insights into
the performance of different approaches in terms of ACC,
interpretability, feature selection, and into their potential for
clinical application in personalized cancer treatment.

Datasets Used

The literature review reveals that METABRIC'?, TCGA-BRCA",
and CuMiDa™ are the most commonly used datasets for
breast cancer research and analysis, as presented in Table 2.
These datasets provide extensive genomic, transcriptomic,
and clinical information, making them highly valuable
for developing ML and DL models focused on prediction,
classification, survival analysis, and personalized treatment
planning.

The METABRIC'?>, TCGA-BRCA'"’, and CuMiDa'* datasets are
described in detail below.

« METABRIC': METABRIC is a widely used breast cancer dataset
that includes clinical and genomic data from approximately
2,000 patients. It provides gene expression profiles, somatic
mutation data, copy number aberrations, and survival
outcomes. The dataset is instrumental in building models for
prognostic analysis, metastasis prediction, and clinical feature
classification.

« TCGA-BRCA'”: TCGA-BRCA dataset contains comprehensive
multi-omic profiles, including mRNA expression, DNA
methylation, copy number variations, and clinical annotations
for over 1,000 breast cancer patients. It supports subtype
classification, survival analysis, and biomarker discovery. Itis a
benchmark dataset for breast cancer ML/DL research because
of its size, richness, and the availability of follow-up data.

« CuMiDa™: The Curated Microarray Database (CuMiDa) is a
collection of microarray gene expression datasets covering
various types of cancer, including breast, liver, lung, prostate,
and kidney. It contains over 1,000 patient samples and is
primarily used for multi-class classification, dimensionality
reduction, and benchmarking optimization-based ML

approaches.

Performance Metrics Used

Performance evaluation plays a crucial role in assessing the
effectiveness of ML and DL models in breast cancer prediction
and analysis. Various studies have employed a range of metrics
depending on the problem type, data balance, and model
objective. The most commonly used metrics include ACC, PRE,
REC, and FS, particularly for classification tasks. Other metrics,
such as balanced accuracy (BAC), kappa (KAP), MCC, and
AUC-ROC, are used for imbalanced datasets and multiclass
classification tasks. PCC was adopted for expression-level
prediction. Table 3 summarizes the performance metrics used
in the reviewed studies.

Below are common performance metrics used in the literature
and how they are calculated:




ACC indicates the ratio of correctly predicted observations to
total observations.

4 TP+ TN 1
r -—4
CoUracy =Tp L TN + FP + FN )

where TP=True Postive, TN=True Negative, P=False Positive and
N=False Negative.

PRE: Measures how many of the positively predicted instances
are actually positive.

Precision = TP 2
recision = o0
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REC: Measures how many actual positive instances were
correctly identified.
TP

Recall = m (3)

FS: The harmonic mean of precision and recall, balancing
both.

FS = 2 x Precision X Recall
- Precision + Recall (4)

Balanced Accuracy (BAC): Used when data is imbalanced. It is
the average of sensitivity and specificity.

TABLE 1: Literature survey findings.

Reference | Findings

n An LSTM model achieved 98.7% accuracy using the multi-omics METABRIC dataset for survival prediction.

3 Dimensionality was reduced from 36,805 to 80 features, and balanced accuracy improved to 93.4%.

1 PCA- and MCC-based feature selection with a DNN improved classification performance.

e RF and XGB achieved accuracies of 97.19% and 95.23%, respectively, and identified key proteins and miRNAs.

8 DIM model improved cancer-driver gene identification with strong cross-cancer generalization.

b XGB and RF models achieved 72.7% accuracy in survival prediction using selected METABRIC features.

0 RecNN achieved an accuracy of 98.69% in predicting metastasis using LASSO-selected features.

2 SVM-RBF achieved 99.79% accuracy in predicting key clinical attributes from METABRIC data.

2 SVM performed best, with subtype-specific AUC-ROC scores of up to 100% for HER2 and Basal subtypes.

= BCC improved subtyping accuracy and reclassified HER2-low as a distinct subtype.

% The Gradient Boosting model achieved 86.4% test accuracy for the mastectomy class; age and relapse were key predictors.

% KAO-AOA-SVM achieved an accuracy of 98.97% using only 15 genes to classify breast cancer.

2 XAl methods, such as SHAP, helped identify the top predictive genes; SVM and RF showed concordant rankings.

% DL with SHAP achieved up to 100% accuracy and validated key genes, including ESR1 and KRT5.

31 DGBCox improved prognostic reliability across 12 datasets by addressing distributional shifts in the data.

32 Multimodal DL using mammograms and clinical data achieved an accuracy of 88.78%.

34 Integration of GEP with ABM improved survival prediction and tumor simulation accuracy.

3 An E2E classifier using mRNA image features achieved 99.91% accuracy.

36 The BCDD biclustering approach outperformed traditional SVD for subtype classification.

8 Identified moderate/low-risk gene mutations, supporting extended genetic screening.

3 A systematic review confirmed ML's promise in diagnosis, biomarker discovery, and treatment prediction.

40 EMGP-net achieved high gene expression prediction accuracy, with a PCC of 0.7903 for PTMA.

s An interpretable ML model using SHAP and enrichment analysis improved BRCA subtype classification.

“ BiLSTM-CNN with MRMR achieved accuracies of 98% (METABRIC) and 96% (TCGA).

45 The review identified CNNs and hybrid DL models as top performers in multimodal survival prediction.

METABRIC: The Molecular Taxonomy of Breast Cancer International Consortium; LSTM: Long short-term memory; PCA: Principal component analysis; MCC:
Mathew’s correlation coefficient; XGB: eXtreme gradient-boosting; RF: Random forest; DIM: Dynamic-incentive-model; LASSO: Least-absolute-shrinkage and
selection-operator; RecNN: Recursive-neural-network; SVM: Support vector machines; RBF: Radial basis function; AUC-ROC: Area under curve-receiver operating
characteristic; HER2: Human epidermal growth factor receptor 2; KAO: Kashmiri-Apple optimization approach; AOA: Armadillo-optimization approach; SHAP:
SHapley Additive exPlanations; DL: Deep learning; DGBCox: Deep-global balancing-cox regression; GEP: Gene expression profiling; ABM: Agent-based modelling;
E2E: Ensemble-of-ensemble; BCDD: Bi-clustering differential-sparsity-constraints and dynamic-graph-regularization; SVD: Singular-value decomposition; ML:
Machine learning; BiLSTM: Bi-directional long short-term memory; CNN: Convolutional neural network; MRMR: Minimum redundancy maximum relevance;
TCGA: The cancer genome atlas.
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TP TN ) )

1
Balanced Accuracy = 3 (TP ~FN + TN T FP

Kappa Coefficient (KAP): Measures agreement between
predicted and actual labels while considering chance
agreement.
Py, —P.
,k=_0—e_ 6)
1-P,
where P denotes observed accuracy, P, denotes
expected accuracy by chance.

MCC: Provides a balanced measure even for imbalanced

datasets.

~ (TP X TN) — (FP x FN)
~ /(TP + FP)(TP + FN)(TN + FP)(TN + FN) )

McCC

AUC-ROC (Area Under Curve - Receiver Operating
Characteristic): Measures the ability of a classifier to
distinguish between classes. Higher AUC indicates better
model performance.

1
AUC — ROC = f TPR(FPR)dFPR )
0

where PR=True Postive Rate, FPR=False Positive Rate.

The Pearson correlation coefficient (PCC) measures the linear
correlation between predicted and true gene expression
levels.

PCC = 2 — )i —y)
VE@: = 2@ —7)?

TABLE 2: Dataset used in existing works.

x, where
respectively.

and y, are predicted and actual values

ML and DL Models and Feature Extraction and Selection
Approaches Used

ML and DL techniques have been widely adopted in breast
cancer research for tasks such as classification, survival
prediction, and biomarker identification. These models are
often complemented with feature selection and feature
extraction methods to enhance performance, reduce
dimensionality,and improve interpretability. Feature selection
techniques, such as LASSO, MCC, and MRMR, help identify the
most relevant variables, whereas extraction methods, such as
PCA and autoencoders transform raw data into meaningful
representations. Table 4 provides a comprehensive overview
of the reviewed studies, highlighting the use of ML, DL,
feature selection, and feature extraction techniques across
different research efforts in this domain.

Issues and Challenges

This section discusses the issues and challenges. Table 5
summarizes the key issues and challenges identified in
existing ML and DL approaches for breast cancer prediction
and analysis. While many studies have demonstrated high
performance, they often exhibit limitations, such as the
exclusive use of ML or DL without cross-paradigm validation.
Additionally, several works rely on basic or outdated feature
selection methods, which may not adequately capture
complex biological interactions. In some studies, feature
extraction methods such as PCA or VAE, though effective for
dimensionality reduction, can lead to a loss of interpretability
or of biologically relevant information. Another significant
issue across studies is the limited generalizability and lack of
external validation, particularly when using small datasets or
omics-specific models. Furthermore, imbalanced datasets,
overfitting, and inconsistent benchmarking between ML and
DL approaches affect the deployment of robust models in
clinical settings.

TABLE 3: Performance metrics used in reviewed studies.

Reference Performance metrics used

11,15,16,19-22,25-28, 43, 44 Accuracy, precision, recall, F1-score

Balanced accuracy score, F1-score,
13 precision, recall, kappa, Matthews
correlation coefficient

Area under the curve-receiver
operating characteristic

23,36

Reference Dataset used

11,15,19, 20, 21, 23, 25,44 METABRIC’\Z

13,28 CuMiDa™

16,22,23,27,30, 36,43, 44 TCGA-BRCA"

24 SCAN-B

32 CMMD33

3 12 breast cancer datasets

8 Custom gene panel sequencing
442 HER2+, STNet

2 ArrayExpress (E-MTAB-3732)

37 TCGA (multiple, including BRCA)
METABRIC: The Molecular Taxonomy of Breast Cancer International
Consortium; HER2: Human epidermal growth factor receptor 2; TCGA:
The cancer genome atlas; BRCA: Breast invasive carcinoma; CuMiDa: The
curated microarray database; CMMD: Chinese mammography database;
SCAN-B: The Sweden Cancerome Analysis Network-Breast.

Custom metrics, statistical validation,
interpretability-based assessments

31,34,38,39

40 Pearson correlation coefficient
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TABLE 4: Overview of ML, DL, feature selection, and feature extraction usage by existing literature review.

Reference | ML DL Feature selection Feature extraction

n No Yes (GCN, LSTM, VAE) | Yes (preprocessing) Yes (VAE)

3 Yes (SVM, NB, DT, RF) No Yes (RO+entropy) Yes (PCA, ICA, SAE)

15 No Yes (DNN) Yes (MCC-based) Yes (PCA)

16 ;ZSB()RF’ SVM, DT, GNB, KNN, No Yes (gene analysis) Yes (pathway & network analysis)
8 No No Yes (NFS-based DIM) Yes (hypergraph+PPI)

19 Yes (XGB, RF, SVM, KNN) No Yes (top-k XGB features) No

0 No Yes (RecNN) Yes (LASSO) Yes (NER)

2 Yes (SVM, LR, RF, Ensemble) | No Yes (preprocessing) No

2 Yes (NB, KNN, SVM, RF) No Yes (LASSO, mCGA) No

= Yes Yes (BCC) Yes (subtype refinement) Yes (RNA-seq embedding)

» Yes (DT, XGB, SVM, LR, etc.) No Yes (SMOTE+feature selection) No

% Yes (SVM) No Yes (KAO+AOA) Yes (gene subset search)

z Yes (KNN, SVM, RF) No Yes (LOCI+SHAP) No

% No Yes (DL+SHAP) Yes (SHAP genes) Yes (ensemble learning)

3 No Yes (DAE, DGBCox) Yes (causal feature balancing) Yes (latent representation via

DAE)

2 Yes (meta-classification) ini:;?r:'gv)Vith Yes (metadata analysis) Yes (CNN for images)

34 Yes No Yes (key gene identification) Yes (agent-based modeling)

* Yes (E2E: XGB, RF, AB, etc.) Yes (AlexNet, ResNet) | Yes (SMOTE) Yes (image transformation)

36 Yes No Yes (sparsity-based) Yes (SVD+graph regularization)
3 No No Yes (gene panel filtering) No

3 Yes Yes Yes (reviewed LASSO, RF, etc.) No

“ No Yes (EMGP-net) Yes (top 250 genes) E’Sﬂcientformewmambavision)
s Yes No Yes (SHAP+hyperparameter tuning) | Yes (dimensionality reduction)
44 Yes Yes (BiLSTM+CNN) Yes (MRMR) Yes (multi-omic integration)

4 No (review) Yes Yes (reviewed techniques) Yes (imaging+genomic fusion)

DL: Deep learning; ML: Machine learning; SVM: Support vector machines; GCN: Graph-convolutional networks; LSTM: Long short-term memory; VAE: Variational
autoencoders; NB: Naive bayes; RF: Random forest; DT: Decision tree; GNB: Gaussian NB; KNN: K-nearest neighbors; XGB: eXtreme gradient-boosting; LR: Logistic-
regression; E2E: Ensemble-of-ensemble; AB: AdaBoost; KAO: Kashmiri-apple optimization approach; AOA: Armadillo-optimization approach; LOCI: Leaving-one-
covariate-in; SHAP: SHapley additive exPlanations; SMOTE: Synthetic minority oversampling technique; CNN: Convolutional neural network; SVD: Singular-value
decomposition; MRMR: Minimum redundancy maximum relevance; BiLSTM: Bi-directional long short-term memory; RO: Remora-optimization; MCC: Mathew’s
correlation coefficient; NFS: Network-functional-score; DIM: Dynamic-incentive-model; PCA: Principal component analysis; SAE: Sparse auto-encoder; ICA:
Independent component analysis; PPI: Protein-protein interaction; LASSO: Least-absolute-shrinkage and selection-operator.

The reviewed literature reveals notable progress in breast
cancer prediction using ML and DL, but also highlights critical
limitations in existing approaches. Many studies rely on
either ML or DL alone, missing opportunities to leverage the
strengths of both. ML models often offer high interpretability
but may struggle with complex, non-linear patterns in omics
data. On the other hand, DL models like CNNs, RNNs, and
AEs provide superior feature representation and predictive
ACC, but are frequently criticized for their black-box nature
and high computational complexity. Feature selection
techniques are often rudimentary, leading to suboptimal
model performance, whereas feature extraction methods

may reduce interpretability. Moreover, several approaches
demonstrate promising results in limited datasets, but fail
to generalize across diverse cohorts due to inadequate
validation strategies. This underscores the growing need
for DL-based frameworks that not only capture high-
dimensional, nonlinear patterns in multi-omic and imaging
data but also integrate explainability and domain knowledge.
Combining DL with advanced feature selection and robust
external validation could pave the way for more accurate,
interpretable, and clinically applicable cancer prediction
models, ultimately contributing to personalized and PRE
oncology.
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TABLE 5: Issues and challenges in existing approaches.

Reference | Issues and challenges

n DL-only method; no ML-to-DL comparison; potential loss of interpretable features during feature extraction using VAE.

. Despite extensive feature extraction, ML-based classifiers may reach a performance plateau; BAC increased, but remained
subpar for all classes.

5 PCA may ignore biologically significant features; however, the DL technique employed lacks diversity in classifiers.

16 Solely employs machine learning; fails to investigate DL models, which could more effectively capture non-linear
dependencies; although gene-level network analysis is intricate, it might overlook more profound patterns.

18 Depends on network-based scoring (DIM), which might not generalize to noisy datasets; lacks DL/ML categorization.

10 The accuracy is comparatively low (72.7%); the feature-extraction approach is not robust; the feature selection is restricted to
the top-k features via XGB.

20 RecNN is used, but no ML comparison is made. LASSO may fail to detect interactions among nonlinear features.

2 The study is ML-only; feature selection is straightforward, and DL is not used for deeper representation learning.

» LASSO and mCGA were employed; however, no DL comparison was conducted. The biomarker finding was robust; however,
there was no evidence of generalizability.

2 DL-based subtyping, but there isnt any obvious external validation; RNA-seq embeddings might vary depending on the
dataset.

% ML models were used; GB performed well, but test accuracy declined, suggesting overfitting.

% DL is not integrated by ML with hybrid feature selection, which is restricted to classification without biological interpretability.

. No DL model is employed; explainability is prioritized, yet predictive power may be weak; feature selection may overlook
latent features.

2 Although the DL model is reliable, it does not integrate biological pathway information, and its generalizability has been
validated only on a small number of datasets.

- When DL is applied to causal inference, its complexity increases, and its interpretability and clinical applicability are
constrained.

2 Multi-modal DL may require improved feature fusion, although its accuracy (88.78%) is lower than that of DL-only methods.

34 No DL model; ABM lacks real-time flexibility and is strong for simulation but not predictive.

35 High performance can be achieved using complex ensemble methods and DL; however, model interpretability and
computational cost remain significant obstacles.

36 There is no DL; bi-clustering and graph regularization are heavily used; interpretability is good but not predictively validated.

3% Gene panel analysis may overlook new biomarkers in more recent datasets because it is not inherently predictive.

3 Review; draws attention to the lack of extensive validation across datasets and the inconsistency in ML/DL model comparison.

" The validation dataset for the gene expression-focused DL model is modest (8 and 23 patients), raising concerns about its
generalizability.

3 Strong interpretability ML model without DL benchmarking; robustness may be impacted by gene expression variability.

" Although BILSTM+CNN works effectively, it is complex and difficult to interpret, and MRMR selection may exclude synergistic
genes.

45 Multimodal DL techniques are reviewed; however, the incorporation of dynamic patient data and explainability remain two
main gaps.

DL: Deep learning; ML: Machine learning; VAE: Variational autoencoders; BAC: Balanced accuracy score; PCA: Principal component analysis; DIM: Dynamic-

incentive-model; XGB: eXtreme gradient-boosting; LASSO: Least-absolute-shrinkage and selection-operator; RecNN: Recursive-neural-network; CNN:

Convolutional neural network; BiLSTM: Bi-directional long short-term memory; ABM: Agent-based modelling; MRMR: Minimum redundancy maximum

relevance; GB: Gradient-boosting.

CONCLUSION

Breastcancerremainsone of the mostcritical health challenges
affecting women worldwide, with early and accurate diagnosis
being essential for effective treatment and improved survival
rates. This work began with a comprehensive review of ML
and DL approaches applied to breast cancer prediction and
classification. Although numerous studies have attempted to

use ML and DL models with various genomic, transcriptomic,
and clinical datasets, significant limitations persist. Common
issues include over-reliance on either ML or DL models, lack
of generalization, inadequate feature selection or extraction
techniques, and inconsistent performance metrics across
datasets. The research identified key gaps such as limited
integration of multi-modal data, poor interpretability, and the
absence of robust, unified frameworks capable of handling
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complex and high-dimensional gene expression data. In
response, the problem statement was formulated to address
the need for a more accurate and generalizable approach
to breast cancer classification. The objectives included
analyzing existing techniques, identifying their limitations,
and proposing a way forward. A systematic methodology was
adopted, including a literature review, dataset exploration,
evaluation of performance metrics, and comparison of MLand
DL models. Findings revealed that DL models generally offer
superior performance but suffer from a lack of transparency
and consistency when applied across different datasets.
Future work will involve developing a novel DL-based
framework that incorporates advanced feature extraction and
selection methods. The proposed system will be trained and
validated using diverse datasets, such as CuMIDA, METABRIC,
and TCGA-BRCA. The goal is to accurately predict and classify
various subtypes of breast cancer while ensuring high
interpretability, robustness, and clinical relevance.
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