JOURNAL of
ONCOLOGICAL
SCIENCES

REVIEW ARTICLE

Understanding Artificial Intelligence Along with Legal and Ethical Issues
Received Date : 20 Sep 2023
Accepted Date : 17 Apr 2024
Available Online : 21 May 2024
Doi: 10.37047/jos.2023-99598 - Article's Language: EN
Journal of Oncological Sciences. 2024;10(2):105-14.
This is an open access article under the CC BY-NC-ND license
ABSTRACT
Artificial intelligence (AI) applications are swiftly integrating into various healthcare domains, notably oncology. Like other technological advancements, AI developments present novel challenges beyond existing ethical and legal frameworks. In addition to grasping the technical aspects of AI, understanding its ethical and legal dimensions is vital for healthcare professionals and oncologists. This comprehension enables them to anticipate, prepare for, or propose solutions to potential issues in this domain. The primary ethical and legal concerns associated with AI applications include black-box algorithms, accountability, bias, transferability, trust, legality, legal risk, liability, data security, and autonomy. This review addresses these critical issues based on existing literature.
REFERENCES
  1. Kumar P, Chauhan S, Awasthi LK. Artificial intelligence in healthcare: review, ethics, trust challenges & future research directions. Engineering Applications of Artificial Intelligence. April 2023;120:105894. [Crossref] 
  2. Çiçin FN, Sayın S. Understanding artificial intelligence and applications in oncology. J Oncol Sci. 2024;10(1):39-46. [Crossref] 
  3. Dignum V. The role and challenges of education for responsible AI. London Review of Education. 2021:19(1). [Crossref] 
  4. Çelebi V, İnal A. [Problem of ethics in the context of artificial intelligence]. Journal of International Social Research. 2019;12(66):651-661. [Crossref] 
  5. Kazim E, Koshiyama AS. A high-level overview of AI ethics. Patterns (N Y). 2021;2(9):100314. [Crossref]  [PubMed]  [PMC] 
  6. Palladino N. A 'biased' emerging governance regime for artificial intelligence? How AI ethics get skewed moving from principles to practices. Telecommunications Policy. 2023;47(5):102479. [Crossref] 
  7. Saranya A, Subhashini R. A systematic review of Explainable Artificial Intelligence models and applications: recent developments and future trends. Decision Analytics Journal. June 2023;7:100230. [Crossref] 
  8. Abdul A, Vermeulen J, Wang D, Lim BY, Kankanhalli M. Trends and trajectories for explainable, accountable and intelligible systems: An HCI research agenda. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 2018:1-18. [Crossref] 
  9. Xu F, Uszkoreit H, Du Y, Fan W, Zhao D, Zhu J. Explainable AI: a brief survey on history, research areas, approaches and challenges. Natural Language Processing and Chinese Computing. 2019. [Crossref] 
  10. Vianello A, Laine S, Tuomi E. Improving trustworthiness of AI solutions: a qualitative approach to support ethically-grounded AI design. International Journal of Human-Computer Interaction. 2023;39(7):1405-1422. [Crossref] 
  11. Arrieta AB, Rodríguez ND, Del J, et al. Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion. June 2020;58:82-115. [Crossref] 
  12. Shin D, Park YJ. Role of fairness, accountability, and transparency in algorithmic affordance. Computers in Human Behavior. September 2019;98:277-284. [Crossref] 
  13. Habli I, Lawton T, Porter Z. Artificial intelligence in health care: accountability and safety. Bull World Health Organ. 2020;98(4):251-256. [Crossref]  [PubMed]  [PMC] 
  14. Lepri B, Oliver N, Pentland A. Ethical machines: the human-centric use of artificial intelligence. iScience. 2021;24(3):102249. [Crossref]  [PubMed]  [PMC] 
  15. Güvercin CH. Tıpta yapay zekâ ve etik. Ekmekci PE, editör. Yapay Zekâ ve Tıp Etiği. 1. Baskı. Ankara: Türkiye Klinikleri; 2020. p.7-13.
  16. Jobin A, Ienca M, Vayena E. The global landscape of AI ethics guidelines. Nat Mach Intell. 2019;1(2):389-399. [Crossref] 
  17. Martinho A, Kroesen M, Chorus C. A healthy debate: exploring the views of medical doctors on the ethics of artificial intelligence. Artificial Intelligence in Medicine. November 2021;121:102190. [Crossref]  [PubMed] 
  18. Saheb T, Saheb T, Carpenter DO. Mapping research strands of ethics of artificial intelligence in healthcare: a bibliometric and content analysis. Computers in Biology and Medicine. August 2021;135:104660. [Crossref]  [PubMed] 
  19. Gijsberts CM, Groenewegen KA, Hoefer IE, et al. Race/ethnic differences in the associations of the framingham risk factors with carotid IMT and cardiovascular events. PLoS ONE. 2015;10(7):e0132321. [Crossref]  [PubMed]  [PMC] 
  20. Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology. 2019;292(1):60-66. [Crossref]  [PubMed] 
  21. Carter SM, Rogers W, Win KT, Frazer H, Richards B, Houssami N. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. The Breast. February 2020;49:25-32. [Crossref]  [PubMed]  [PMC] 
  22. European Commission [Internet]. [Cited: September 19, 2023]. Ethics guidelines for trustworthy AI. Available from: [Link] 
  23. Kerasidou A. Artificial intelligence and the ongoing need for empathy, compassion and trust in healthcare. Bull World Health Organ. 2020;98(4):245-250. [Crossref]  [PubMed]  [PMC] 
  24. Somashekhar SP, Sepúlveda MJ, Puglielli S, et al. Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board. Annals of Oncology. 2018;29(2):418-423. [Crossref]  [PubMed] 
  25. Elkhader J. Elemento O. Artificial intelligence in oncology: from bench to clinic. Seminars in Cancer Biology. September 2022;84:113-128. [Crossref]  [PubMed] 
  26. Coiera E. On algorithms, machines, and medicine. Lancet Oncol. 2019;20(2):166-167. [Crossref]  [PubMed] 
  27. Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA. 2017;318(6):517-518. [Crossref]  [PubMed] 
  28. Loder J, Nicholas L. Confronting Dr Robot: Creating a People-Powered Future for AI in Health. 2018. [Link] 
  29. Price WN, Cohen IG. Privacy in the age of medical big data. Nat Med. January 2019;25:37-43. [Crossref]  [PubMed]  [PMC] 
  30. Martinez NM, Luo Z, Kaushal A, et al. Ethical issues in using ambient intelligence in health-care settings. The Lancet Digital Health. 2021;3(2):115-123. [Crossref]  [PubMed] 
  31. Sunarti S, Rahman FF, Naufal M, Risky M, Febriyanto K, Masnina R. Artificial intelligence in healthcare: opportunities and risk for future. Gaceta Sanitaria. 2021;35(1):S67-S70. [Crossref]  [PubMed] 
  32. Reddy S, Allan S, Coghlan S, Cooper P. A governance model for the application of AI in health care. J Am Med Inform Assoc. 2020;27(3):491-497. [Crossref]  [PubMed]  [PMC] 
  33. Cohen IG, Mello MM. Big data, big tech, and protecting patient privacy. JAMA. 2019;322(12):1141-1142. [Crossref]  [PubMed] 
  34. Char DS, Shah NH, Magnus D. Implementing machine learning in health care - addressing ethical challenges. N Engl J Med. 2018;378(11):981-983. [Crossref]  [PubMed]  [PMC] 
  35. Mezrich JL. Demystifying medico-legal challenges of artificial intelligence applications in molecular imaging and therapy. PET Clin. 2022;17(1):41-49. [Crossref]  [PubMed]