REVIEW ARTICLE
Molecular and Biological Mechanisms of Apoptosis and its Detection Techniques
Received Date : 22 Jun 2019
Accepted Date : 21 Nov 2019
Available Online : 14 Feb 2020
Suganya CHINNASAMYa, Farhan ZAMEERb, Krishnasamy MUTHUCHELIANa,b
aMadurai Kamaraj University School of Energy, Environment and Natural Resources, Department of Bioenergy, Tamil Nadu, India
bDayananda Sagar University School of Basic and Applied Sciences, Department of Biological Sciences, Karnataka, India
Doi: 10.37047/jos.2020-73477 - Article's Language: EN
J Oncol Sci. 2020;6(1):49-64
ABSTRACT
Apoptosis (programmed cell death), a self-destructive cellular mechanism, is essential for various events like sculpting the body, responding to any abnormalities, and removal of unwanted/damaged cells. Either too little or a high level of apoptosis causes conditions, such as chronic neurodegenerative maladies including Alzheimer's and Parkinson's diseases and cancer, i.e., an uncontrolled cell development. A typical apoptotic process includes cell shrinkage, degradation of DNA and mitochondrial breakdown, formation of blebs, cell fragmentation, release of nucleotides and phosphatidylserine on the surface of the cell, evoking an "eat-me" sign to the phagocytes. The detection of cell death in cells and tissues has gained immense therapeutic potential. Although many key proteins of the cell cycle machinery and apoptotic signaling pathway have been identified, the molecular mechanisms of these proteins are still not clear. This review attempts to summarize the fundamental aspects and the molecular mechanism of apoptosis, recent advances in detection methodologies, as well as some of the negative aspects of the applied techniques.
Keywords: Apoptosis; programmed cell death; intrinsic/extrinsic pathway
REFERENCES
- Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239-257. [Crossref] [PubMed] [PMC]
- Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet. 2012;13(10):693-704. [Crossref] [PubMed] [PMC]
- Eisenberg DT. An evolutionary review of human telomere biology: the thrifty telomere hypothesis and notes on potential adaptive paternal effects. Am J Hum Biol. 2011;23(2):149-167. [Crossref] [PubMed]
- Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev. 2008;88(2):557-579. [Crossref] [PubMed]
- Ornish D, Lin J, Chan JM, et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14(11):1112-1120. [Crossref]
- Igney FH, Krammer PH. Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer. 2002;2(4):277-288. [Crossref] [PubMed]
- Martinvalet D, Zhu P, Lieberman J. Granzyme A induces caspase- independent mitochondrial damage, a required first step for apoptosis. Immunity. 2005;22(3):355-370. [Crossref] [PubMed]
- Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770-776. [Crossref] [PubMed]
- Cohen GM. Caspases: the executioners of apoptosis. Biochem J. 1997;326(pt 1):1-16. [Crossref] [PubMed] [PMC]
- Rai NK, Tripathi K, Sharma D, Shukla VK. Apoptosis: a basic physiologic process in wound healing. Int J Low Extrem Wounds. 2005;4(3):138-144. [Crossref] [PubMed]
- Hu S, Snipas SJ, Vincenz C, Salvesen G, Dixit VM. Caspase-14 is a novel developmental regulated protease. J Biol Chem. 1998;273(45):29648-29653. [Crossref] [PubMed]
- Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 2000;403(6765):98-103. [Crossref] [PubMed]
- Koenig U, Eckhart L, Tschachler E. Evidence that caspase-13 is not a human but a bovine gene. Biochem Biophys Res Commun. 2001;285(5):1150-1154. [Crossref] [PubMed]
- Kang SJ, Wang S, Kuida K, Yuan J. Distinct downstream pathways of caspase-11 in regulating apoptosis and cytokine maturation during septic shock response. Cell Death Differ. 2002;9(10):1115-1125. [Crossref] [PubMed]
- Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104(4):487-501. [Crossref]
- Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281 (5381):1305-1308. [Crossref] [PubMed]
- Chicheportiche Y, Bourdon PR, Xu H, et al. TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem. 1997;272(51):32401-32410. [Crossref] [PubMed]
- Peter ME, Krammer PH. Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol. 1998;10(5):545-551. [Crossref]
- Suliman A, Lam A, Datta R, Srivastava RK. Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and -independent pathways. Oncogene. 2001;20(17): 2122-2133. [Crossref] [PubMed]
- Rubio-Moscardo F, Blesa D, Mestre C, et al. Characterization of 8p21.3 chromosomal deletions in B-cell lymphoma: TRAIL-R1 and TRAIL-R2 as candidate dosage-dependent tumor suppressor genes. Blood. 2005;106(9): 3214-3222. [Crossref] [PubMed]
- Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 1995;81(4):495-504. [Crossref]
- Grimm LM, Alfred LG, Guy G, et al. Proteasomes play an essential role in thymocyte apoptosis. The EMBO Journal. 1996;15(15): 3835-3844. [Crossref] [PubMed] [PMC]
- Wajant H. The Fas signaling pathway: more than a paradigm. Science. 2002;296(5573): 1635-1636. [Crossref] [PubMed]
- Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)- associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 1995;14(22):5579-5588. [Crossref] [PubMed] [PMC]
- Kataoka T, Schröter M, Hahne M, et al. FLIP prevents apoptosis induced by death receptors but not by perforin/granzyme B, chemotherapeutic drugs, and gamma irradiation. J Immunol. 1998;161(8):3936-3942.
- Scaffidi C, Schmitz I, Krammer PH, Peter ME. The role of c-FLIP in modulation of CD95- induced apoptosis. J Biol Chem. 1999;274(3): 1541-1548. [Crossref] [PubMed]
- Hitoshi Y, Lorens J, Kitada SI, et al. Toso, a cell surface, specific regulator of Fas-induced apoptosis in T cells. Immunity. 1998;8(4):461-471. [Crossref]
- Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene. 2004;23(16):2861-2874. [Crossref] [PubMed]
- Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta. 1998;1366(1-2):139-149. [Crossref]
- Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102(1): 33-42. [Crossref]
- Loo D. TUNEL assay. An overview of techniques. Methods Mol Biol. 2002;(203):21-30. [Crossref] [PubMed]
- Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006;13(9):1423-1433. [Crossref] [PubMed]
- Chinnaiyan AM. The apoptosome: heart and soul of the cell death machine. Neoplasia. 1999;1(1):5-15. [Crossref] [PubMed] [PMC]
- Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J. 2004;23(10):2134- 2145. [Crossref] [PubMed] [PMC]
- van Loo G, van Gurp M, Depuydt B, et al. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ. 2002;9(1):20-26. [Crossref] [PubMed]
- Schimmer AD. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res. 2004;64(20):7183-7190. [Crossref] [PubMed]
- Ekert PG, Vaux DL. The mitochondrial death squad: hardened killers or innocent bystanders? Curr Opin Cell Biol. 2005;17(6):626-630. [Crossref] [PubMed]
- Joza N, Susin SA, Daugas E, et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature. 2001;410(6828):549-554. [Crossref] [PubMed]
- Susin SA, Daugas E, Ravagnan L, et al. Two distinct pathways leading to nuclear apoptosis. J Exp Med. 2000;192(4):571-580. [Crossref] [PubMed] [PMC]
- Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature. 2001;412(6842):95-99. [Crossref] [PubMed]
- Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2(9):647-656. [Crossref] [PubMed]
- Schuler M, Green DR. Mechanisms of p53-dependent apoptosis. Biochem Soc Trans. 2001;29(pt 6):684-688. [Crossref] [PubMed]
- Liu FT, Newland AC, Jia L. Bax conformational change is a crucial step for PUMA-mediated apoptosis in human leukemia. Biochem Biophys Res Commun. 2003;310(3):956-962. [Crossref] [PubMed]
- Oda E, Ohki R, Murasawa H, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53- induced apoptosis. Science. 2000;288(5488):1053-1058. [Crossref] [PubMed]
- Shibue T, Suzuki S, Okamoto H, et al. Differential contribution of Puma and Noxa in dual regulation of p53-mediated apoptotic pathways. EMBO J. 2006;25(20):4952-4962. [Crossref] [PubMed] [PMC]
- Chen L, Willis SN, Wei A, et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell. 2005;17(3):393-403. [Crossref] [PubMed]
- Meyer N, Kim SS, Penn LZ. The Oscar-worthy role of Myc in apoptosis. Semin Cancer Biol. 2006;16(4):275-287. [Crossref] [PubMed]
- Slee EA, Adrain C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct, nonredundant roles during the demolition phase of apoptosis. J Biol Chem. 2001;276(10):7320-7326. [Crossref] [PubMed]
- Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992;148(7):2207-2216.
- Martin SJ, Green DR. Protease activation during apoptosis: death by a thousand cuts? Cell. 1995;82(3):349-352. [Crossref]
- Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 1998;101(4):890-898. [Crossref] [PubMed] [PMC]
- Cadena-Herrera D, Esparza-De Lara JE, Ramírez-Iba-ez ND, et al. Validation of three viable-cell counting methods: manual, semi-automated, and automated. Biotechnol Rep (Amst). April 2015;(7):9-16. [Crossref] [PubMed] [PMC]
- Philpott NJ, Turner AJ, Scopes J, et al. The use of 7-amino actinomycin D in identifying apoptosis: simplicity of use and broad spectrum of application compared with other techniques. Blood. 1996;87(6):2244-2251. [Crossref] [PubMed]
- Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 1997;A3.B.1- A3.B.2.
- Lecoeur H. Nuclear apoptosis detection by flow cytometry: influence of endogenous endonucleases. Exp Cell Res. 2002;277(1):1-14. [Crossref] [PubMed]
- Wilson JG, Beaudoin HJ. Free HJ. Studies on the mechanism of teratogenic action of trypan blue. Anat Rec. 1959;133(2):115-128. [Crossref] [PubMed]
- Barber AN, Geer JC. Studies on the teratogenic properties of trypan blue and its components in mice. J Embryol Exp Morphol. March 1964;(12):1-14.
- Beck F, Lloyd JB. Dose-response curves f or the teratogenic activity of trypan blue. Nature. March 1964;(201):1136-1137. [Crossref] [PubMed]
- Turbow MM. Teratogenic effect of trypan blue on rat embryos cultivated in vitro. Nature. 1965;206(984):637. [Crossref] [PubMed]
- Field FE, Roberts G, Hallowes RC, Palmer AK, Williams KE, Lloyd JB. Trypan blue: identification and teratogenic and oncogenic activities of its coloured constituents. Chem. Biol Interact. 1977;16(1):69-88. [Crossref]
- Burd JF, Usategui-Gomez M. A colorimetric assay for serum lactate dehydrogenase. Clin Chim Acta. 1973;46(3):223-227. [Crossref]
- Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J Immunol Methods. 1983;64(3):313-320. [Crossref]
- Skaanild MT, Clausen J. Estimation of LC5q values by assay of lactate dehydrogenase and DNA redistribution in human lymphocyte cultures. ATLA. 1989;16:293-296.
- Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 1994;84(5): 1415-1420. [Crossref] [PubMed]
- Tominaga H, Ishiyama M, Ohseto F, et al. A watersoluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun. 1999;36(2):47-50. [Crossref]
- Ishiyama M, Shiga M, Sakamoto K, Mizoguchi M, He PG. A new sulfonated tetrazolium salt that produces a highly water-soluble formazan dye. Chem Pharm Bull. 1993;41(6):1118-1122. [Crossref]
- Cory AH, Owen TC, Barltrop JA, Cory JG. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun. 1991;3(7):207-212. [Crossref] [PubMed]
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. [Crossref]
- Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev. 2005;(11):127-152. [Crossref]
- Bernas T, Dobrucki J. Mitochondrial and nonmitochondrial reduction of MTT: interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry. 2002;47(4):236-242. [Crossref] [PubMed]
- Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods. 1989;119(2):203- 210. [Crossref]
- Tada H, Shiho O, Kuroshima K, Koyama M, Tsukamoto K. An improved colorimetric assay for interleukin 2. J Immunol Methods. 1986;93(2):157-165. [Crossref]
- Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986;89(2):271-277. [Crossref]
- Fujinami Y, Kataoka M, Matsushita K, et al. Sensitive detection of bacteria and spores using a portable bioluminescence ATp measurement. Assay system distinguishing from white powder materials. Journal of Health Science. 2004;50(2):126-132. [Crossref]
- Lozano GM, Bejarano I, Espino J, et al. Density gradient capacitation is the most suitable method to improve fertilization and to reduce DNA fragmentation positive spermatozoa of infertile men. Anatolian Journal of Obstetrics & Gynecology. 2009;3(1):1-7.
- Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sper cells. Analogy to apoptosis of somatic cells. Exp Cell Res. 1993;207(1):202-205. [Crossref] [PubMed]
- Nandhakumar S, Parasuraman S, Shanmugam MM, Rao KR, Chand P, Bhat BV. Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay). J Pharmacol Pharmacother. 2011;2(2):107-111. [Crossref] [PubMed] [PMC]
- Tice RR, Agurell E, Anderson D, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 2000;35(3):206-221. [Crossref]
- Ostling O, Johanson KJ. Single-cell gel electrophoresis assay. Biochem Biophys Res Commun. 1984;(123):291-298. [Crossref]
- Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184-191. [Crossref]
- Willingham MC. Cytochemical methods for the detection of apoptosis. J Histochem Cytochem. 1999;47(9):1101-1109. [Crossref] [PubMed]
- Collins JA, Schandl CA, Young KK, Vesely J, Willingham MC. Major DNA fragmentation is a late event in apoptosis. J Histochem Cytochem. 1997;45(7):923-934. [Crossref] [PubMed]
- Hessler JA, Budor A, Putchakayala K, et al. Atomic force microscopy study of early morphological changes during apoptosis. Langmuir. 2005;21(20):9280-9286. [Crossref] [PubMed]