JOURNAL of
ONCOLOGICAL
SCIENCES

ORIGINAL RESEARCH ARTICLE

Ischemia-Modified Albumin and Thiol-Disulfide Homeostasis in Metastatic Pancreatic Cancer
Received Date : 18 Sep 2022
Accepted Date : 25 Oct 2022
Available Online : 09 Nov 2022
Doi: 10.37047/jos.2022-93441 - Article's Language: EN
J Oncol Sci. 2022;8(3):148-56
This is an open access article under the CC BY-NC-ND license
ABSTRACT
Objective: This study aimed to assess two oxidative stress (OxS) markers, thiol-disulfide (TD) homeostasis and ischemia-modified albumin (IMA), in newly diagnosed metastatic pancreatic cancer (PC) patients. Material and Methods: This was a prospective casecontrol study including two groups: 30 cases each of histopathologically confirmed metastatic PC patients and healthy controls. Serum TD and IMA levels were measured and compared in both groups. Moreover, the association between TD and IMA levels, as well as overall survival (OS) in the patient group, were investigated. Results: Both native thiol (NT) and total thiol (TT) levels significantly decreased in the patient group than in the control group (p=0.016 and p=0.009, respectively). However, disulfide (D) and IMA levels were similar between the two groups (p=0.056 and p=0.068, respectively). Both the D/NT and D/TT ratios were significantly higher in the patient group (p=0.005 and p=0.004, respectively) than in the control group. Additionally, no association was observed between IMA, TD homeostasis, and OS. Conclusion: Our results showed that increased OxS levels affected PC progression. With the development of newer targeted therapeutics for OxS, the progression of PC in individuals with higher genetic risk may be prevented.
REFERENCES
  1. Cykowiak M, Krajka-Kuźniak V. Role of Nrf2 in pancreatic cancer. Antioxidants (Basel). 2021;11(1):98. [Crossref]  [PubMed]  [PMC] 
  2. Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer. Cancer Metab. Nov 2014;2:17:20141128. [Crossref]  [PubMed]  [PMC] 
  3. Hruban RH, Iacobuzio-Donahue C, Wilentz RE, Goggins M, Kern SE. Molecular pathology of pancreatic cancer. Cancer J. 2001;7(4):251-258. [PubMed] 
  4. Weinberg F, Hamanaka R, Wheaton WW, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010;107(19):8788-8793. [Crossref]  [PubMed]  [PMC] 
  5. Vaziri-Gohar A, Zarei M, Brody JR, Winter JM. Metabolic dependencies in pancreatic cancer. Front Oncol. 2018;8:617. Erratum in: Front Oncol. Jan 2019;8:672. [Crossref]  [PubMed]  [PMC] 
  6. Ahn CS, Metallo CM. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. 2015;3(1):1. [Crossref]  [PubMed]  [PMC] 
  7. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM. The antioxidant function of the p53 tumor suppressor. Nat Med. 2005;11(12):1306-1313. [Crossref]  [PubMed]  [PMC] 
  8. Sen CK, Packer L. Thiol homeostasis and supplements in physical exercise. Am J Clin Nutr. 2000;72(2 Suppl):653S-69S. [Crossref]  [PubMed] 
  9. Turell L, Radi R, Alvarez B. The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol Med. Dec 2013;65:244-253. [Crossref]  [PubMed]  [PMC] 
  10. Biswas S, Chida AS, Rahman I. Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem Pharmacol. 2006;71(5):551-564. [Crossref]  [PubMed] 
  11. Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4(5):278-286. [Crossref]  [PubMed] 
  12. Roy D, Quiles J, Gaze DC, Collinson P, Kaski JC, Baxter GF. Role of reactive oxygen species on the formation of the novel diagnostic marker ischaemia modified albumin. Heart. 2006;92(1):113-114. [Crossref]  [PubMed]  [PMC] 
  13. Ma Y, Kang W, Bao Y, Jiao F, Ma Y. Clinical significance of ischemia-modified albumin in the diagnosis of doxorubicin-induced myocardial injury in breast cancer patients. PLoS One. 2013;8(11):e79426. [Crossref]  [PubMed]  [PMC] 
  14. Sbarouni E, Georgiadou P, Voudris V. Ischemia modified albumin changes-review and clinical implications. Clin Chem Lab Med. 2011;49(2):177-184. [Crossref]  [PubMed] 
  15. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem. 2014;47(18):326-332. [Crossref]  [PubMed] 
  16. Bar-Or D, Lau E, Winkler JV. A novel assay for cobalt-albumin binding and its potential as a marker for myocardial ischemia-a preliminary report. J Emerg Med. 2000;19(4):311-315. [Crossref]  [PubMed] 
  17. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82(2):291-295. [Crossref]  [PubMed] 
  18. Kiebala M, Skalska J, Casulo C, et al. Dual targeting of the thioredoxin and glutathione antioxidant systems in malignant B cells: a novel synergistic therapeutic approach. Exp Hematol. 2015;43(2):89-99. [Crossref]  [PubMed]  [PMC] 
  19. Storz P. KRas, ROS and the initiation of pancreatic cancer. Small GTPases. 2017;8(1):38-42. [Crossref]  [PubMed]  [PMC] 
  20. Karatas F, Acat M, Sahin S, et al. The prognostic and predictive significance of serum thiols and disulfide levels in advanced non-small cell lung cancer. Aging Male. 2020;23(5):619-628. [Crossref]  [PubMed] 
  21. Hanikoglu F, Hanikoglu A, Kucuksayan E, et al. Dynamic thiol/disulphide homeostasis before and after radical prostatectomy in patients with prostate cancer. Free Radic Res. 2016;50(sup1):S79-S84. [Crossref]  [PubMed] 
  22. Demirseren DD, Cicek C, Alisik M, Demirseren ME, Aktaş A, Erel O. Dynamic thiol/disulphide homeostasis in patients with basal cell carcinoma. Cutan Ocul Toxicol. 2017;36(3):278-282. [Crossref]  [PubMed] 
  23. Inal BB, Emre HO, Baran O, et al. Dynamic thiol-disulphide homeostasis in low-grade gliomas: Preliminary results in serum. Clin Neurol Neurosurg. Oct 2017;161:17-21. [Crossref]  [PubMed] 
  24. Battisti V, Maders LD, Bagatini MD, et al. Oxidative stress and antioxidant status in prostate cancer patients: relation to Gleason score, treatment and bone metastasis. Biomed Pharmacother. 2011;65(7):516-524. [Crossref]  [PubMed] 
  25. Martinez-Useros J, Li W, Cabeza-Morales M, Garcia-Foncillas J. Oxidative stress: a new target for pancreatic cancer prognosis and treatment. J Clin Med. 2017;6(3):29. [Crossref]  [PubMed]  [PMC] 
  26. Feng JF, Lu L, Zeng P, et al. Serum total oxidant/antioxidant status and trace element levels in breast cancer patients. Int J Clin Oncol. 2012;17(6):575-583. [Crossref]  [PubMed] 
  27. Stachowicz-Stencel T, Synakiewicz A, Owczarzak A, et al. Ischemia-modified albumin as a biochemical marker in children with neuroblastoma and soft tissue sarcomas. J Clin Lab Anal. 2011;25(4):255-258. [Crossref]  [PubMed]  [PMC] 
  28. Mastella AK, Moresco RN, da Silva DB, et al. Evaluation of ischemia-modified albumin in myocardial infarction and prostatic diseases. Biomed Pharmacother. 2009;63(10):762-766. [Crossref]  [PubMed] 
  29. Fidan E, Mentese A, Kavgaci H, et al. Increased ischemia-modified albumin levels in patients with gastric cancer. Neoplasma. 2012;59(4):393-397. [Crossref]  [PubMed] 
  30. Zhang L, Li J, Zong L, et al. Reactive oxygen species and targeted therapy for pancreatic cancer. Oxid Med Cell Longev. 2016;2016:1616781. [Crossref]  [PubMed]  [PMC] 
  31. Wang X, Wang C, Zhang H. Improvement of diagnostic accuracy for pancreatic cancer with serum lactate dehydrogenase. Cancer Manag Res. Jun 2021;13:4879-4886. [Crossref]  [PubMed]  [PMC] 
  32. Shibuki T, Mizuta T, Shimokawa M, et al. Prognostic nomogram for patients with unresectable pancreatic cancer treated with gemcitabine plus nab-paclitaxel or FOLFIRINOX: a post-hoc analysis of a multicenter retrospective study in Japan (NAPOLEON study). BMC Cancer. 2022;22(1):19. [Crossref]  [PubMed]  [PMC] 
  33. Conklin KA. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther. 2004;3(4):294-300. [Crossref]  [PubMed] 
  34. Saha T, Rih JK, Rosen EM. BRCA1 down-regulates cellular levels of reactive oxygen species. FEBS Lett. 2009;583(9):1535-1543. [Crossref]  [PubMed]  [PMC] 
  35. Santiago-Arteche R, Mu-iz P, Cavia-Saiz M, et al. Cancer chemotherapy reduces plasma total polyphenols and total antioxidants capacity in colorectal cancer patients. Mol Biol Rep. 2012;39(10):9355-9360. [Crossref]  [PubMed] 
  36. Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 2000;256(1):42-49. [Crossref]  [PubMed] 
  37. Stanić D, Plećaš-Solarović B, Petrović J, et al. Hydrogen peroxide-induced oxidative damage in peripheral blood lymphocytes from rats chronically treated with corticosterone: the protective effect of oxytocin treatment. Chem Biol Interact. Aug 2016;256:134-141. [Crossref]  [PubMed]